您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 65-70.doi: 10.6040/j.issn.1671-9352.0.2022.589

•   • 上一篇    下一篇

奇异同谱图的构造

梁超凡(),刘奋进*(),李玉超,柳顺义   

  1. 长安大学理学院, 陕西 西安 710064
  • 收稿日期:2022-11-09 出版日期:2024-02-20 发布日期:2024-02-20
  • 通讯作者: 刘奋进 E-mail:18875047255@163.com;fenjinliu@163.com
  • 作者简介:梁超凡(1996—), 女, 硕士研究生, 研究方向为图谱与代数图论. E-mail: 18875047255@163.com
  • 基金资助:
    陕西省自然科学基金资助项目(2021JM-149);陕西省自然科学基金资助项目(2021JQ-219);陕西省自然科学基金资助项目(2022JM-019);中央高校科研基本业务费专项资金资助项目(300102121104)

Construction of singularly cospectral graphs

Chaofan LIANG(),Fenjin LIU*(),Yuchao LI,Shunyi LIU   

  1. School of Sciences, Chang'an University, Xi'an 710064, Shaanxi, China
  • Received:2022-11-09 Online:2024-02-20 Published:2024-02-20
  • Contact: Fenjin LIU E-mail:18875047255@163.com;fenjinliu@163.com

摘要:

2个图称为奇异同谱的, 如果它们有相同的非零奇异值及重数。奇异同谱较同谱弱, 但比等能量强。利用t-联(阴影)冠图图运算及分块矩阵技巧, 构造一类新的奇异同谱图, 对研究等能量图的结构及图谱性质具有重要意义。

关键词: 特征值, 奇异同谱, 分块矩阵, 等能量

Abstract:

Two graphs are called singularly cospectral if they have the same nonzero singular value with the same multiplicity. Singularly cospectral is weaker than cospectral but stronger than equienergetic. A new construction of singularly cospectral graph is derived using the operation of t-join(shadow) corona of a graph and the technique of block matrix which has great significance for studying the structural and spectral properties of equienergetic graphs.

Key words: eigenvalue, singularly cospectral, block matrix, equienergetic

中图分类号: 

  • O157.5

图1

一对4-正则的奇异同谱图G1和G2"

图2

J1C(G1)和J1C(G2)"

图3

一对奇异同谱图H1和H2"

图4

S1C(H1)和S1C(H2)"

1 GUTMAN I. The energy of a graph[J]. Graz Forschungszentrum Mathematisch Statistische Sektion Berichte, 1978, 103, 1-22.
2 NIKIFOROV V. Beyond graph energy: norms of graphs and matrices[J]. Linear Algebra and its Applications, 2016, 506, 82-138.
doi: 10.1016/j.laa.2016.05.011
3 ABIAD A, ALFARO C A. Enumeration of cospectral and coinvariant graphs[J]. Applied Mathematics and Computation, 2021, 408, 126348.
doi: 10.1016/j.amc.2021.126348
4 GODSIL C D, MCKAY B D. Constructing cospectral graphs[J]. Aequationes Mathematicae, 1982, 25 (1):257-268.
doi: 10.1007/BF02189621
5 JI Y, GONG S, WANG W. Constructing cospectral bipartite graphs[J]. Discrete Mathematics, 2020, 343 (10):112020.
doi: 10.1016/j.disc.2020.112020
6 KANNAN M R, PRAGADA S, WANKHEDE H. On the construction of cospectral nonisomorphic bipartite graphs[J]. Discrete Mathematics, 2022, 345 (8):112916.
doi: 10.1016/j.disc.2022.112916
7 QIU L, JI Y, WANG W. On a theorem of Godsil and McKay concerning the construction of cospectral graphs[J]. Linear Algebra and its Applications, 2020, 603, 265-274.
doi: 10.1016/j.laa.2020.05.025
8 CONDE C, DRATMAN E, GRIPPO L N. Finding singularly cospectral graphs[J]. Linear and Multilinear Algebra, 2023, 71 (3):496-512.
doi: 10.1080/03081087.2022.2035306
9 INDULAL G, VIJAYAKUMAR A. On a pair of equienergetic graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2006, 55 (1):83-90.
10 CVETKOVIĆ D M, DOOB M, SACHS H. Spectra of graphs: theory and application[M]. New York: Academic Press, 1980.
11 CVETKOVIĆ D M, ROWLINSON P, SIMIĆ S. An introduction to the theory of graph spectra[M]. New York: Cambridge University Press, 2010.
12 BALAKRISHNAN R. The energy of a graph[J]. Linear Algebra and its Applications, 2004, 387 (1):287-295.
13 BONIFÁCIO A S, VINAGRE C T M, DE ABREU N M M. Constructing pairs of equienergetic and non-cospectral graphs[J]. Applied Mathematics Letters, 2008, 21 (4):338-341.
doi: 10.1016/j.aml.2007.04.002
14 BRANKOV V, STEVANOVIC D P, GUTMAN I. Equienergetic chemical trees[J]. Journal of the Serbian Chemical Society, 2004, 69 (7):549-554.
doi: 10.2298/JSC0407549B
15 JOSEPH S P. A graph operation and its applications in generating orderenergetic and equienergetic graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2022, 87 (3):703-715.
doi: 10.46793/match.87-3.703J
16 RAMANE H S, GUTMAN I, WALIKAR H B, et al. Equienergetic complement graphs[J]. Kragujevac Journal of Science, 2005, 27, 67-74.
17 RAMANE H S, WALIKAR H B, RAO S B, et al. Spectra and energies of iterated line graphs of regular graphs[J]. Applied Mathematics Letters, 2005, 18 (6):679-682.
doi: 10.1016/j.aml.2004.04.012
[1] 任师贤,安静. 球域上传输特征值问题的一种有效的谱逼近[J]. 《山东大学学报(理学版)》, 2023, 58(4): 8-15.
[2] 代丽芳,梁茂林,冉延平. 一类张量特征值反问题的可解性条件[J]. 《山东大学学报(理学版)》, 2021, 56(6): 95-102.
[3] 张亚莉. 一类含一阶导数的四阶边值问题正解的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(8): 102-110.
[4] 贾淑香,邓波,冶成福,付凤,陈辉龙. 图的Resolvent Estrada指标的上(下)界刻画[J]. 《山东大学学报(理学版)》, 2020, 55(4): 92-96.
[5] 赵娇. 一类非线性三阶边值问题正解集的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(10): 104-110.
[6] 姬杰. 一类脉冲Strum-Liouville算子的特征值渐近式和迹公式[J]. 《山东大学学报(理学版)》, 2019, 54(10): 49-56.
[7] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[8] 蹇渊, 刘丁酉. 一类区间三对角矩阵特征值的确界[J]. 山东大学学报(理学版), 2015, 50(12): 15-22.
[9] 郝萍萍, 魏广生. 一类Dirac算子特征值的渐近式[J]. 山东大学学报(理学版), 2015, 50(02): 55-59.
[10] 王峰. 非奇异M-矩阵的逆矩阵和M-矩阵的Hadamard积的最小特征值下界估计[J]. J4, 2013, 48(8): 30-33.
[11] 靳广清,左连翠*. 图的拟拉普拉斯矩阵前k个最大特征值和的上界[J]. J4, 2013, 48(8): 1-4.
[12] 孙德荣,徐兰. 恰有三个主特征值的树[J]. J4, 2013, 48(6): 23-28.
[13] 赵娜. 时标上Sturm-Liouville问题的有限谱[J]. J4, 2013, 48(09): 96-102.
[14] YANG Xiao-ying, LIU Xin. M矩阵及其逆矩阵的Hadamard积最小特征值下界的估计[J]. J4, 2012, 47(8): 64-67.
[15] 廖文诗,伍俊良. 矩阵展形的一些新的上界[J]. J4, 2012, 47(10): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘洪华 . 色散方程的交替分组迭代方法[J]. J4, 2007, 42(1): 19 -23 .
[2] 刘昆仑. 变结构pair copula模型在金融危机传染分析中的应用[J]. 山东大学学报(理学版), 2016, 51(6): 104 -110 .
[3] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[4] 袁瑞强,刘贯群,张贤良,高会旺 . 黄河三角洲浅层地下水中氢氧同位素的特征[J]. J4, 2006, 41(5): 138 -143 .
[5] 郭乔进,丁轶,李宁. 一种基于上下文信息的乳腺肿块ROI检测方法[J]. J4, 2010, 45(7): 70 -75 .
[6] 付海艳,卢昌荆,史开泉 . (F,F-)-规律推理与规律挖掘[J]. J4, 2007, 42(7): 54 -57 .
[7] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[8] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .
[9] 胡选子1, 谢存禧2. 基于人工免疫网络的机器人局部路径规划[J]. J4, 2010, 45(7): 122 -126 .
[10] 郭文鹃,杨公平*,董晋利. 指纹图像分割方法综述[J]. J4, 2010, 45(7): 94 -101 .