《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (2): 65-70.doi: 10.6040/j.issn.1671-9352.0.2022.589
Chaofan LIANG(),Fenjin LIU*(),Yuchao LI,Shunyi LIU
摘要:
2个图称为奇异同谱的, 如果它们有相同的非零奇异值及重数。奇异同谱较同谱弱, 但比等能量强。利用t-联(阴影)冠图图运算及分块矩阵技巧, 构造一类新的奇异同谱图, 对研究等能量图的结构及图谱性质具有重要意义。
中图分类号:
1 | GUTMAN I. The energy of a graph[J]. Graz Forschungszentrum Mathematisch Statistische Sektion Berichte, 1978, 103, 1-22. |
2 |
NIKIFOROV V. Beyond graph energy: norms of graphs and matrices[J]. Linear Algebra and its Applications, 2016, 506, 82-138.
doi: 10.1016/j.laa.2016.05.011 |
3 |
ABIAD A, ALFARO C A. Enumeration of cospectral and coinvariant graphs[J]. Applied Mathematics and Computation, 2021, 408, 126348.
doi: 10.1016/j.amc.2021.126348 |
4 |
GODSIL C D, MCKAY B D. Constructing cospectral graphs[J]. Aequationes Mathematicae, 1982, 25 (1):257-268.
doi: 10.1007/BF02189621 |
5 |
JI Y, GONG S, WANG W. Constructing cospectral bipartite graphs[J]. Discrete Mathematics, 2020, 343 (10):112020.
doi: 10.1016/j.disc.2020.112020 |
6 |
KANNAN M R, PRAGADA S, WANKHEDE H. On the construction of cospectral nonisomorphic bipartite graphs[J]. Discrete Mathematics, 2022, 345 (8):112916.
doi: 10.1016/j.disc.2022.112916 |
7 |
QIU L, JI Y, WANG W. On a theorem of Godsil and McKay concerning the construction of cospectral graphs[J]. Linear Algebra and its Applications, 2020, 603, 265-274.
doi: 10.1016/j.laa.2020.05.025 |
8 |
CONDE C, DRATMAN E, GRIPPO L N. Finding singularly cospectral graphs[J]. Linear and Multilinear Algebra, 2023, 71 (3):496-512.
doi: 10.1080/03081087.2022.2035306 |
9 | INDULAL G, VIJAYAKUMAR A. On a pair of equienergetic graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2006, 55 (1):83-90. |
10 | CVETKOVIĆ D M, DOOB M, SACHS H. Spectra of graphs: theory and application[M]. New York: Academic Press, 1980. |
11 | CVETKOVIĆ D M, ROWLINSON P, SIMIĆ S. An introduction to the theory of graph spectra[M]. New York: Cambridge University Press, 2010. |
12 | BALAKRISHNAN R. The energy of a graph[J]. Linear Algebra and its Applications, 2004, 387 (1):287-295. |
13 |
BONIFÁCIO A S, VINAGRE C T M, DE ABREU N M M. Constructing pairs of equienergetic and non-cospectral graphs[J]. Applied Mathematics Letters, 2008, 21 (4):338-341.
doi: 10.1016/j.aml.2007.04.002 |
14 |
BRANKOV V, STEVANOVIC D P, GUTMAN I. Equienergetic chemical trees[J]. Journal of the Serbian Chemical Society, 2004, 69 (7):549-554.
doi: 10.2298/JSC0407549B |
15 |
JOSEPH S P. A graph operation and its applications in generating orderenergetic and equienergetic graphs[J]. MATCH Communications in Mathematical and in Computer Chemistry, 2022, 87 (3):703-715.
doi: 10.46793/match.87-3.703J |
16 | RAMANE H S, GUTMAN I, WALIKAR H B, et al. Equienergetic complement graphs[J]. Kragujevac Journal of Science, 2005, 27, 67-74. |
17 |
RAMANE H S, WALIKAR H B, RAO S B, et al. Spectra and energies of iterated line graphs of regular graphs[J]. Applied Mathematics Letters, 2005, 18 (6):679-682.
doi: 10.1016/j.aml.2004.04.012 |
[1] | 任师贤,安静. 球域上传输特征值问题的一种有效的谱逼近[J]. 《山东大学学报(理学版)》, 2023, 58(4): 8-15. |
[2] | 代丽芳,梁茂林,冉延平. 一类张量特征值反问题的可解性条件[J]. 《山东大学学报(理学版)》, 2021, 56(6): 95-102. |
[3] | 张亚莉. 一类含一阶导数的四阶边值问题正解的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(8): 102-110. |
[4] | 贾淑香,邓波,冶成福,付凤,陈辉龙. 图的Resolvent Estrada指标的上(下)界刻画[J]. 《山东大学学报(理学版)》, 2020, 55(4): 92-96. |
[5] | 赵娇. 一类非线性三阶边值问题正解集的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(10): 104-110. |
[6] | 姬杰. 一类脉冲Strum-Liouville算子的特征值渐近式和迹公式[J]. 《山东大学学报(理学版)》, 2019, 54(10): 49-56. |
[7] | 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56. |
[8] | 蹇渊, 刘丁酉. 一类区间三对角矩阵特征值的确界[J]. 山东大学学报(理学版), 2015, 50(12): 15-22. |
[9] | 郝萍萍, 魏广生. 一类Dirac算子特征值的渐近式[J]. 山东大学学报(理学版), 2015, 50(02): 55-59. |
[10] | 王峰. 非奇异M-矩阵的逆矩阵和M-矩阵的Hadamard积的最小特征值下界估计[J]. J4, 2013, 48(8): 30-33. |
[11] | 靳广清,左连翠*. 图的拟拉普拉斯矩阵前k个最大特征值和的上界[J]. J4, 2013, 48(8): 1-4. |
[12] | 孙德荣,徐兰. 恰有三个主特征值的树[J]. J4, 2013, 48(6): 23-28. |
[13] | 赵娜. 时标上Sturm-Liouville问题的有限谱[J]. J4, 2013, 48(09): 96-102. |
[14] | YANG Xiao-ying, LIU Xin. M矩阵及其逆矩阵的Hadamard积最小特征值下界的估计[J]. J4, 2012, 47(8): 64-67. |
[15] | 廖文诗,伍俊良. 矩阵展形的一些新的上界[J]. J4, 2012, 47(10): 54-58. |
|