《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 21-31.doi: 10.6040/j.issn.1671-9352.4.2024.350
吴海,牛娇娇*,铁文彦,左建坤
WU Hai, NIU Jiaojiao*, TIE Wenyan, ZUO Jiankun
摘要: 针对如何构建形式背景的整个概念格的问题,提出一种基于粒概念的概念格构造方法。通过粒概念生成一般概念的概念学习机制,构建一个包含输入层、粒概念生成层和概念生成层的粒概念网络(granular concept network, GraCN)。对粒概念网络中的概念节点进行去重处理,并添加内涵为属性全集和外延为对象全集的概念节点,构建形式背景的概念格。数值实验证明使用粒概念网络生成概念格的可行性和有效性。
中图分类号:
| [1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concept[C] //Proceeding of the 7th International Conference on Formal Concept Analysis. Berlin: Spring, 2009:314-339. [2] WEI Ling, QI Jianjun. Relation between concept lattice reduction and rough set reduction[J]. Knowledge-Based Systems, 2010, 23(8):934-938. [3] CHEN Degang, ZHANG Wenxiu, YEUNG D, et al. Rough approximations on a complete completely distributive lattice with applications to generalized rough sets[J]. Information Sciences, 2006, 176(13):1829-1848. [4] LI Jinhai, REN Yue, MEI Changlin, et al. A comparative study of multigranulation rough sets and concept lattices via rule acquisition[J]. Knowledge-Based Systems, 2016, 91:152-164. [5] XU Weihua, GUO Doudou, QIAN Yuhua, et al. Two-way concept-cognitive learning method: a fuzzy-based progressive learning [J]. IEEE Transactions on Fuzzy Systems, 2023, 31(6):1885-1899. [6] LAI Hongliang, ZHANG Dexue. Concept lattices of fuzzy contexts: formal concept analysis vs. rough set theory[J]. International Journal of Approximate Reasoning, 2009, 50(5):695-707. [7] ZHANG Qiye, XIE Weixian, FAN Lei. Fuzzy complete lattices[J]. Fuzzy Sets and Systems, 2009, 160(16):2275-2291. [8] WEI Ling, LIU Lin, QI Jianjun, et al. Rules acquisition of formal decision contexts based on three-way concept lattices[J]. Information Sciences, 2020, 516:529-544. [9] REN Ruisi, WEI Ling. The attribute reductions of three-way concept lattices[J]. Knowledge-Based Systems, 2016, 99:92-102. [10] QI Jianjun, WEI Ling, YAO Yiyu. Three-way formal concept analysis[C] //Rough Sets and Knowledge Technology: 9th International Conference, RSKT 2014. Shanghai: Springer, 2014:732-741. [11] SPOTO A, STEFANUTTI L, VIDOTTO G. Knowledge space theory, formal concept analysis, and computerized psychological assessment[J]. Behavior Research Methods, 2010, 42(1):342-350. [12] POELMANS J, IGNATOV D I, KUZNETSOV S O, et al. Formal concept analysis in knowledge processing: a survey on applications[J]. Expert Systems with Applications, 2013, 40(16):6538-6560. [13] XU Weihua, LI Wentao. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets[J]. IEEE Transactions on Cybernetics, 2014, 46(2):366-379. [14] LOIA V, ORCIUOLI F, PEDRYCZ W. Towards a granular computing approach based on formal concept analysis for discovering periodicities in data[J]. Knowledge-Based Systems, 2018, 146:1-11. [15] LIN Tsau Young. Granular computing I: the concept of granulation and its formal model[J]. International Journal of Granular Computing, Rough Sets and Intelligent Systems, 2009, 1(1):21-42. [16] PANG Kuo, MARTÍNEZ L, LI Nan, et al. A concept lattice-based expert opinion aggregation method for multi-attribute group decision-making with linguistic information[J]. Expert Systems with Applications, 2024, 237:121485. [17] ZHAI Yanhui, WANG Tao, LI Deyu. Robust variable threshold fuzzy concept lattice with application to medical diagnosis[J]. International Journal of Fuzzy Systems, 2024, 26(1):344-356. [18] WANG Lu, PEI Zheng, QIN Keyun. A novel conflict analysis model based on the formal concept analysis[J]. Applied Intelligence, 2023, 53(9):10699-10714. [19] ZHI Huilai, LI Jinhai. Component similarity based conflict analysis: an information fusion viewpoint[J]. Information Fusion, 2024, 104:102157. [20] LANG Guangming, YAO Yiyu. Formal concept analysis perspectives on three-way conflict analysis[J]. International Journal of Approximate Reasoning, 2023, 152:160-182. [21] HU Qian, YUAN Zhong, QIN Keyun, et al. A novel outlier detection approach based on formal concept analysis[J]. Knowledge-Based Systems, 2023, 268:110486. [22] SHAO Mingwen, HU Zhiyong, WU Weizhi, et al. Graph neural networks induced by concept lattices for classification[J]. International Journal of Approximate Reasoning, 2023, 154:262-276. [23] GUO Doudou, XU Weihua, QIAN Yuhua, et al. Fuzzy-granular concept-cognitive learning via three-way decision: performance evaluation on dynamic knowledge discovery[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(3):1409-1423. [24] OJEDA-HERNÁNDEZ M, LÓPEZ-RODRÍGUEZ D, MORA Á. Lexicon-based sentiment analysis in texts using formal concept analysis[J]. International Journal of Approximate Reasoning, 2023, 155:104-112. [25] KUZNETSOV S O. Learning of simple conceptual graphs from positive and negative examples[C] //European Conference on Principles of Data Mining and Knowledge Discovery. Heidelberg: Springer, 1999:384-391. [26] FU Huaiguo, NGUIFO E M. A parallel algorithm to generate formal concepts for large data[C] //Concept Lattices: Second International Conference on Formal Concept Analysis, ICFCA 2004. Sydney: Springer, 2004:394-401. [27] KUZNETSOV S O, OBIEDKOV S A. Comparing performance of algorithms for generating concept lattices[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2002, 14(2/3):189-216. [28] NOURINE L, RAYNAUD O. A fast algorithm for building lattices[J]. Information Processing Letters, 1999, 71(5/6):199-204. [29] LINDIG C. Fast concept analysis[J]. Working with Conceptual Structures-Contributions to ICCS, 2000, 2000:152-161. [30] GODIN R, MINEAU G, MISSAOUI R. Incremental structuring of knowledge bases[C] //Proceedings of the International Knowledge Retrieval, Use, and Storage for Efficiency Symposium. Santa Cruz: KRUSE, 1995, 95:179-193. [31] GODIN R, MISSAOUI R, ALAOUI H. Incremental concept formation algorithms based on galois(concept)lattices[J]. Computational Intelligence, 1995, 11(2):246-267. [32] GODIN R, MILI H, MINEAU G W, et al. Design of class hierarchies based on concept,(galois)lattices[J]. Theory and Practice of Object Systems, 1998, 4(2):117-134. [33] VALTCHEV P, MISSAOUI R. Building concept(galois)lattices from parts: generalizing the incremental methods [C] //International Conference on Conceptual Structures. Heidelberg: Springer, 2001:290-303. [34] VALTCHEV P, MISSAOUI R, LEBRUN P. A partition-based approach towards constructing galois(concept)lattices[J]. Discrete Mathematics, 2002, 256(3):801-829. [35] MA Jianmin, ZHANG Wenxiu, LEUNG Y, et al. Granular computing and dual galois connection[J]. Information Sciences, 2007, 177(23):5365-5377. [36] KANG Xiangping, LI Deyu, WANG Suge, et al. Formal concept analysis based on fuzzy granularity base for different granulations [J]. Fuzzy Sets and Systems, 2012, 203:33-48. [37] WU Weizhi, LEUNG Y, MI Jusheng. Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 21(10):1461-1474. [38] LI Jinhai, HUANG Chenchen, QI Jianjun, et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378:244-263. [39] LI Jinhai, MEI Changlin, XU Weihua, et al. Concept learning via granular computing: a cognitive viewpoint[J]. Information Sciences, 2015, 298:447-467. [40] LI J H, KUMAR C A, MEI C L, et al. Comparison of reduction in formal decision contexts[J]. International Journal of Approximate Reasoning, 2017, 80:100-122. [41] 闫梦宇,李金海,刘文奇,等. 带对象结构信息形式背景的概念知识发现与演化[J]. 电子学报,2023,51(1):11-17. YAN Mengyu, LI Jinhai, LIU Wenqi, et al. Conceptual knowledge discovery and evolution in formal context with object structure information[J]. Acta Electronica Sinica, 2023, 51(1):11-17. |
| [1] | 华有霖,邵亚斌,朱学勤. 基于粒球计算的多粒度支持向量回归算法[J]. 《山东大学学报(理学版)》, 2025, 60(7): 104-115. |
| [2] | 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89. |
| [3] | 吴江,刘德山,于莹莹,庞阔,李晓峰. 基于模糊对象语言概念格的规则提取[J]. 《山东大学学报(理学版)》, 2024, 59(5): 63-69. |
| [4] | 范敏,秦琴,李金海. 基于三支因果力的邻域推荐算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 12-22. |
| [5] | 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 35-44. |
| [6] | 陈玉明,郑光宇,焦娜. 基于粒神经网络的多标签学习[J]. 《山东大学学报(理学版)》, 2024, 59(5): 1-11. |
| [7] | 刘忠慧,姜帅,闵帆. 模糊概念集的启发式构造方法及其推荐应用[J]. 《山东大学学报(理学版)》, 2024, 59(3): 14-26. |
| [8] | 陈曜琦,徐伟华,蒋宗颖. 三支概念的恢复集[J]. 《山东大学学报(理学版)》, 2023, 58(12): 52-62. |
| [9] | 韩培磊,魏玲,王振,赵思雨. FCA中的互补概念及其性质与生成[J]. 《山东大学学报(理学版)》, 2022, 57(8): 60-67. |
| [10] | 常丽娜, 魏玲. 基于OE-近似概念格的不完备决策背景的规则提取[J]. 《山东大学学报(理学版)》, 2021, 56(11): 31-37. |
| [11] | 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82. |
| [12] | 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12. |
| [13] | 李双伶,岳晓威,秦克云. 多源形式背景中的粒结构[J]. 《山东大学学报(理学版)》, 2020, 55(5): 46-54. |
| [14] | 刘营营,米据生,梁美社,李磊军. 三支区间集概念格[J]. 《山东大学学报(理学版)》, 2020, 55(3): 70-80. |
| [15] | 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65. |
|