《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 72-83.doi: 10.6040/j.issn.1671-9352.0.2023.338
• • 上一篇
罗艺华,杜燕飞*
LUO Yihua, DU Yanfei*
摘要: 利用特征方程根的分布分析方法,研究了正平衡点的稳定性和Hopf分支的存在性,得到了系统在发生Hopf分支时的时滞临界值。利用中心流形定理和规范型理论,确定了分支方向和分支周期解的稳定性。系统可能存在无食饵边界平衡点与正平衡点双稳、无食饵边界平衡点与周期解双稳2种双稳态,通过数值模拟验证了理论结果。
中图分类号:
[1] MOFFAT C E, LALONDE R G, ENSING D J, et al. Frequency-dependent host species use by a candidate biological control insect within its native European range[J]. Biological Control, 2013, 67(3):498-508. [2] OWEN M R, LEWIS M A. How predation can slow, stop or reverse a prey invasion[J]. Bulletin of Mathematical Biology, 2001, 63(4):655-684. [3] FAGAN W F, LEWIS M A, NEUBERT M G, et al. Invasion theory and biological control[J]. Ecology Letters, 2002, 5(1):148-157. [4] MAGAL C, COSNER C, RUAN S, et al. Control of invasive hosts by generalist parasitoids[J]. Mathematical Medicine and Biology, 2008, 25(1):1-20. [5] CROWDER D W, SNYDER W E. Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators[J]. Biological Invasions, 2010, 12:2857-2876. [6] XIANG Chuang, HUANG Jicai, RUAN Shigui, et al. Bifurcation analysis in a host-generalist parasitoid model with Holling II functional response[J]. Journal of Differential Equations, 2020, 268(8):4618-4662. [7] ERBACH A, LUTSCHER F, SEO G. Bistability and limit cycles in generalist predator-prey dynamics[J]. Ecological Complexity, 2013, 14:48-55. [8] CHAKRABORTY S. The influence of generalist predators in spatially extended predator-prey systems[J]. Ecological Complexity, 2015, 23:50-60. [9] MADEC S, CASAS J, BARLES G, et al. Bistability induced by generalist natural enemies can reverse pest invasions[J]. Journal of Mathematical Biology, 2017, 75:543-575. [10] FURTER J, GRINFELD M. Local vs. non-local interactions in population dynamics[J]. Journal of Mathematical Biology, 1989, 27:65-80. [11] CHEN Shanshan, YU Jianshe. Stability and bifurcation on predator-prey systems with nonlocal prey competition[J]. Discrete and Continuous Dynamical Systems, 2018, 38(1):43-62. [12] WU Shuhao, SONG Yongli. Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition[J]. Nonlinear Analysis: Real World Applications, 2019, 48:12-39. [13] YANG Feng, SONG Yongli. Stability and spatiotemporal dynamics of a diffusive predator-prey system with generalist predator and nonlocal intraspecific competition[J]. Mathematics and Computers in Simulation, 2022, 194:159-168. [14] LIU Yaqi, DUAN Daifeng, NIU Ben. Spatiotemporal dynamics in a diffusive predator-prey model with group defense and nonlocal competition[J]. Applied Mathematics Letters, 2020, 103:106175. [15] GENG Dongxu, JIANG Weihua, LOU Yuan, et al. Spatiotemporal patterns in a diffusive predator-prey system with nonlocal intraspecific prey competition[J]. Studies in Applied Mathematics, 2022, 148(1):396-432. [16] SHEN Zuolin, LIU Yang, WEI Junjie. Double Hopf bifurcation in nonlocal reaction-diffusion systems with spatial average kernel[J]. Discrete and Continuous Dynamical Systems B, 2023, 28(4):2424-2462. [17] YANG Ruizhi, WANG Fatao, JIN Dan. Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator-prey system with additional food[J]. Mathematical Methods in the Applied Sciences, 2022, 45(16):9967-9978. [18] KUANG Y. Delay differential equations: with applications in population dynamics[M]. New York: Academic Press, 1993. [19] LIU Zhihua, YUAN Rong. Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2004, 296(2):521-537. [20] BERETTA E, KUANG Y. Global analyses in some delayed ratio-dependent predator-prey systems[J]. Nonlinear Analysis: Theory, Methods & Applications, 1998, 32(3):381-408. [21] MARTIN A, RUAN S. Predator-prey models with delay and prey harvesting[J]. Journal of Mathematical Biology, 2001, 43:247-267. [22] HASSARD B D, KAZARINOFF N D, WAN Y H. Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press, 1981. |
[1] | 李丝雨,杨赟瑞. 一类非对称非局部扩散系统双稳行波解的稳定性[J]. 《山东大学学报(理学版)》, 2025, 60(4): 40-49. |
[2] | 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88. |
[3] | 张峰,梁嘉玮. 带噪声记忆的非零和随机微分博弈问题的充分最大值原理[J]. 《山东大学学报(理学版)》, 2024, 59(10): 46-52. |
[4] | 王晓,刘重阳,胡电中,刘刚. 1,3-丙二醇间歇发酵中的时滞最优控制[J]. 《山东大学学报(理学版)》, 2024, 59(1): 124-131, 138. |
[5] | 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103. |
[6] | 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91. |
[7] | 许越,韩晓玲. 具有双时滞的媒体效应对西藏地区包虫病控制的影响[J]. 《山东大学学报(理学版)》, 2023, 58(5): 53-62. |
[8] | 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53. |
[9] | 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126. |
[10] | 李蕾,叶永升. 具有Dirichlet有界条件的反应扩散Cohen-Grossberg神经网络指数稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 67-74. |
[11] | 霍林杰,张存华. 具有Holling-Ⅲ型功能反应的捕食扩散系统的稳定性和Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(1): 16-24. |
[12] | 庞玉婷,赵东霞,鲍芳霞. 具有多时滞和多参数的双向环状网络的稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(8): 103-110. |
[13] | 王苗苗,丁小丽,李佳敏. 分数阶随机时滞微分方程的波形松弛方法[J]. 《山东大学学报(理学版)》, 2022, 57(1): 101-110. |
[14] | 沈维,张存华. 时滞食饵-捕食系统的多次稳定性切换和Hopf分支[J]. 《山东大学学报(理学版)》, 2022, 57(1): 42-49. |
[15] | 魏立祥,张建刚,南梦冉,张美娇. 具有时滞的磁通神经元模型的稳定性及Hopf分岔[J]. 《山东大学学报(理学版)》, 2021, 56(5): 12-22. |
|