您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 72-83.doi: 10.6040/j.issn.1671-9352.0.2023.338

• • 上一篇    

具有非局部竞争和时滞的广食性捕食者-食饵模型的Hopf分支

罗艺华,杜燕飞*   

  1. 陕西科技大学数学与数据科学学院, 陕西 西安 710021
  • 发布日期:2025-04-08
  • 通讯作者: 杜燕飞(1984— ),女,副教授,硕士生导师,博士,研究方向为微分方程与动力系统、分支理论. E-mail:duyanfei@sust.edu.cn
  • 作者简介:罗艺华(2000— ),女,硕士研究生,研究方向为反应扩散方程的分支理论. E-mail:1561227763@qq.com*通信作者:杜燕飞(1984— ),女,副教授,硕士生导师,博士,研究方向为微分方程与动力系统、分支理论. E-mail:duyanfei@sust.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11901369);陕西科技大学博士启动资金资助项目(2023BJ-13)

Hopf bifurcation in a diffusive generalist predator-prey system with nonlocal competition and time delay

LUO Yihua, DU Yanfei*   

  1. School of Mathematics &
    Data Science, Shaanxi University of Science &
    Technology, Xian 710021, Shaanxi, China
  • Published:2025-04-08

摘要: 利用特征方程根的分布分析方法,研究了正平衡点的稳定性和Hopf分支的存在性,得到了系统在发生Hopf分支时的时滞临界值。利用中心流形定理和规范型理论,确定了分支方向和分支周期解的稳定性。系统可能存在无食饵边界平衡点与正平衡点双稳、无食饵边界平衡点与周期解双稳2种双稳态,通过数值模拟验证了理论结果。

关键词: 广食性捕食者, 非局部竞争, 时滞, Hopf分支, 双稳

Abstract: The stability of positive equilibrium and the existence of Hopf bifurcation are studied by analyzing the distribution of eigenvalues. The critical time delay of Hopf bifurcation is obtained. Applying center manifold method and normal form theory, the direction of Hopf bifurcation and stability of the bifurcating periodic solution are discussed. It is shown that there are two types of bistability. The prey-free equilibrium and the positive equilibrium are both stable. The prey-free equilibrium and the periodic solution are both stable. Numerical simulations are presented to support the theoretical results.

Key words: generalist predator, nonlocal competition, time delay, Hopf bifurcation, bistability

中图分类号: 

  • O175
[1] MOFFAT C E, LALONDE R G, ENSING D J, et al. Frequency-dependent host species use by a candidate biological control insect within its native European range[J]. Biological Control, 2013, 67(3):498-508.
[2] OWEN M R, LEWIS M A. How predation can slow, stop or reverse a prey invasion[J]. Bulletin of Mathematical Biology, 2001, 63(4):655-684.
[3] FAGAN W F, LEWIS M A, NEUBERT M G, et al. Invasion theory and biological control[J]. Ecology Letters, 2002, 5(1):148-157.
[4] MAGAL C, COSNER C, RUAN S, et al. Control of invasive hosts by generalist parasitoids[J]. Mathematical Medicine and Biology, 2008, 25(1):1-20.
[5] CROWDER D W, SNYDER W E. Eating their way to the top? Mechanisms underlying the success of invasive insect generalist predators[J]. Biological Invasions, 2010, 12:2857-2876.
[6] XIANG Chuang, HUANG Jicai, RUAN Shigui, et al. Bifurcation analysis in a host-generalist parasitoid model with Holling II functional response[J]. Journal of Differential Equations, 2020, 268(8):4618-4662.
[7] ERBACH A, LUTSCHER F, SEO G. Bistability and limit cycles in generalist predator-prey dynamics[J]. Ecological Complexity, 2013, 14:48-55.
[8] CHAKRABORTY S. The influence of generalist predators in spatially extended predator-prey systems[J]. Ecological Complexity, 2015, 23:50-60.
[9] MADEC S, CASAS J, BARLES G, et al. Bistability induced by generalist natural enemies can reverse pest invasions[J]. Journal of Mathematical Biology, 2017, 75:543-575.
[10] FURTER J, GRINFELD M. Local vs. non-local interactions in population dynamics[J]. Journal of Mathematical Biology, 1989, 27:65-80.
[11] CHEN Shanshan, YU Jianshe. Stability and bifurcation on predator-prey systems with nonlocal prey competition[J]. Discrete and Continuous Dynamical Systems, 2018, 38(1):43-62.
[12] WU Shuhao, SONG Yongli. Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition[J]. Nonlinear Analysis: Real World Applications, 2019, 48:12-39.
[13] YANG Feng, SONG Yongli. Stability and spatiotemporal dynamics of a diffusive predator-prey system with generalist predator and nonlocal intraspecific competition[J]. Mathematics and Computers in Simulation, 2022, 194:159-168.
[14] LIU Yaqi, DUAN Daifeng, NIU Ben. Spatiotemporal dynamics in a diffusive predator-prey model with group defense and nonlocal competition[J]. Applied Mathematics Letters, 2020, 103:106175.
[15] GENG Dongxu, JIANG Weihua, LOU Yuan, et al. Spatiotemporal patterns in a diffusive predator-prey system with nonlocal intraspecific prey competition[J]. Studies in Applied Mathematics, 2022, 148(1):396-432.
[16] SHEN Zuolin, LIU Yang, WEI Junjie. Double Hopf bifurcation in nonlocal reaction-diffusion systems with spatial average kernel[J]. Discrete and Continuous Dynamical Systems B, 2023, 28(4):2424-2462.
[17] YANG Ruizhi, WANG Fatao, JIN Dan. Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator-prey system with additional food[J]. Mathematical Methods in the Applied Sciences, 2022, 45(16):9967-9978.
[18] KUANG Y. Delay differential equations: with applications in population dynamics[M]. New York: Academic Press, 1993.
[19] LIU Zhihua, YUAN Rong. Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2004, 296(2):521-537.
[20] BERETTA E, KUANG Y. Global analyses in some delayed ratio-dependent predator-prey systems[J]. Nonlinear Analysis: Theory, Methods & Applications, 1998, 32(3):381-408.
[21] MARTIN A, RUAN S. Predator-prey models with delay and prey harvesting[J]. Journal of Mathematical Biology, 2001, 43:247-267.
[22] HASSARD B D, KAZARINOFF N D, WAN Y H. Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press, 1981.
[1] 李丝雨,杨赟瑞. 一类非对称非局部扩散系统双稳行波解的稳定性[J]. 《山东大学学报(理学版)》, 2025, 60(4): 40-49.
[2] 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88.
[3] 张峰,梁嘉玮. 带噪声记忆的非零和随机微分博弈问题的充分最大值原理[J]. 《山东大学学报(理学版)》, 2024, 59(10): 46-52.
[4] 王晓,刘重阳,胡电中,刘刚. 1,3-丙二醇间歇发酵中的时滞最优控制[J]. 《山东大学学报(理学版)》, 2024, 59(1): 124-131, 138.
[5] 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103.
[6] 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91.
[7] 许越,韩晓玲. 具有双时滞的媒体效应对西藏地区包虫病控制的影响[J]. 《山东大学学报(理学版)》, 2023, 58(5): 53-62.
[8] 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53.
[9] 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126.
[10] 李蕾,叶永升. 具有Dirichlet有界条件的反应扩散Cohen-Grossberg神经网络指数稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 67-74.
[11] 霍林杰,张存华. 具有Holling-Ⅲ型功能反应的捕食扩散系统的稳定性和Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(1): 16-24.
[12] 庞玉婷,赵东霞,鲍芳霞. 具有多时滞和多参数的双向环状网络的稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(8): 103-110.
[13] 王苗苗,丁小丽,李佳敏. 分数阶随机时滞微分方程的波形松弛方法[J]. 《山东大学学报(理学版)》, 2022, 57(1): 101-110.
[14] 沈维,张存华. 时滞食饵-捕食系统的多次稳定性切换和Hopf分支[J]. 《山东大学学报(理学版)》, 2022, 57(1): 42-49.
[15] 魏立祥,张建刚,南梦冉,张美娇. 具有时滞的磁通神经元模型的稳定性及Hopf分岔[J]. 《山东大学学报(理学版)》, 2021, 56(5): 12-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!