山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (6): 57-63.doi: 10.6040/j.issn.1671-9352.0.2018.003
杜广伟
摘要: 利用一个改进的p-调和逼近引理,首先证明了具有次临界增长的p-Laplace型拟线性椭圆障碍问题解的梯度的Morrey正则性。进一步地,利用Hölder连续函数的积分刻划引理得到了解的Hölder连续性。利用该方法避免了证明梯度的反向不等式,从而简化了证明。
中图分类号:
[1] MICHAEL J, ZIEMER W. Interior regularity for solutions to obstacle problems[J]. Nonlinear Analysis, 1986, 10(12): 1427-1448. [2] CHOE H J, LEWIS J. On the obstacle problem for quasilinear elliptic equations of p Laplacian type[J]. SIAM Journal on Mathematical Analysis, 1991, 22(3): 623-638. [3] CHOE H J. A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems[J]. Archive for Rational Mechanics and Analysis, 1991, 114(4): 383-394. [4] DUZAAR F, GASTEL A. Nonlinear elliptic systems with Dini continuous coefficients[J]. Archiv der Mathematik, 2002, 78(1): 58-73. [5] QIU Yalin. Optimal partial regularity of second order nonlinear elliptic systemswith Dini continuous coefficients for the superquadratic case[J]. Nonlinear Analysis, 2012, 75(8): 3574-3590. [6] BÖGELEIN V, DUZAAR F, HABERMANN J, et al. Partial Hölder continuity for discontinuous elliptic problems with VMO-coefficients[J]. Proceedings of the London Mathematical Society, 2011, 103(3):371-404. [7] DUZAAR F, GROTOWSKI J F. Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation[J]. Manuscripta Mathematica, 2000, 103(3): 267-298. [8] DUZAAR F, MINGIONE G. The p-harmonic approximation and the regularity of p-harmonic maps[J]. Calculus of Variations and Partial Differential Equations, 2004, 20(3): 235-256. [9] DUZAAR F, MINGIONE G. Regularity for degenerate elliptic problems via p-harmonic approximation[J]. Annales de l'Institut Henri Poincaré(C)Non, Analyse Linear, 2004, 21(5): 735-766. [10] YU Haiyan, ZHENG Shenzhou. Optimal partial regularity for quasilinear elliptic systems with VMO coefficients based on A-harmonic approximations[J]. Electronic Journal of Differential Equations, 2015, 2015(16): 1-12. [11] CHEN Yazhe, WU Lancheng. Second order elliptic equations and elliptic systems[M]. Rhode Island: American Mathematical Society, 1998. [12] KINNUNEN J, ZHOU Shulin. A local estimate for nonlinear equations with discontinuous coefficients[J]. Communications in Partial Differential Equations, 1999, 24(11/12): 2043-2068. |
[1] | 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71. |
[2] | 李会会,刘希强,辛祥鹏. 变系数Benjamin-Bona-Mahony-Burgers方程的微分不变量和精确解[J]. 山东大学学报(理学版), 2018, 53(10): 51-60. |
[3] | 董亚莹. 一类空间退化的捕食-食饵模型的全局分歧结构[J]. 山东大学学报(理学版), 2018, 53(4): 76-84. |
[4] | 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94. |
[5] | 张泰年,李照兴. 一类退化抛物型方程反问题的收敛性分析[J]. 山东大学学报(理学版), 2017, 52(8): 35-42. |
[6] | 段双双,钱媛媛. Keller-Segel型交叉扩散方程组柯西问题解的逐点估计[J]. 山东大学学报(理学版), 2017, 52(4): 40-47. |
[7] | 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60. |
[8] | 李玉,刘希强. 扩展的KP-Benjamin-Bona-Mahoney方程的对称、约化和精确解[J]. 山东大学学报(理学版), 2017, 52(2): 77-84. |
[9] | 张道祥, 赵李鲜, 胡伟. 一类三种群食物链模型中交错扩散引起的Turing不稳定[J]. 山东大学学报(理学版), 2017, 52(1): 88-97. |
[10] | 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122. |
[11] | 宋萌萌,尚海锋. 具测度初值的非线性抛物方程组的Cauchy问题[J]. 山东大学学报(理学版), 2016, 51(10): 41-47. |
[12] | 李月霞,张丽娜,张晓杰. 2维Lengyel-Epstein模型的分支结构[J]. 山东大学学报(理学版), 2016, 51(8): 74-78. |
[13] | 罗李平,罗振国,曾云辉. 一类带阻尼项的拟线性双曲系统的(全)振动性问题[J]. 山东大学学报(理学版), 2016, 51(6): 73-77. |
[14] | 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134. |
[15] | 董建伟,娄光谱,王艳萍. 一个半导体简化能量输运模型稳态解的唯一性[J]. 山东大学学报(理学版), 2016, 51(2): 37-41. |
|