《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 116-124.doi: 10.6040/j.issn.1671-9352.0.2023.186
• • 上一篇
杨秀楠,邢慧*
YANG Xiunan, XING Hui*
摘要: 研究带有交错扩散的时滞Brusselator模型。首先应用线性化的方法分析该系统特征方程根的分布,得到系统唯一正平衡点的局部渐近稳定性和Hopf分支存在性;其次分析时滞参数对系统Hopf分支存在性的影响;最后,利用MATLAB软件进行数值模拟来支持理论结果。
中图分类号:
[1] PRIGOGENE I, LEFEVER R. Symmetry breaking instabilities in dissipative system [J]. The Journal of Chemical Physics, 1968, 48(4):1665-1700. [2] MURRAY J D. Mathematical biology I: an introduction [M]. 3rd ed. New York: Springer, 2002:175-217. [3] ERNEUX T, REISS E. Brussellator isolas[J]. SIAM Journal on Applied Mathematics, 1983, 43(6):1240-1246. [4] LI Y. Hopf bifurcations in general systems of Brusselator type[J]. Nonlinear Analysis: Real World Applications, 2016, 28:32-47. [5] GHERGU M. Steady-state solutions for a general Brusselator system[J]. Operator Theory: Advances and Application, 2011, 216:153-166. [6] LI B, WANG M X. Diffusion-driven instability and Hopf bifurcation in Brusselator system[J]. Applied Mathematics and Mechanics, 2008, 29(6):825-832. [7] PENG R, WANG M X. Pattern formation in the Brusselator system[J]. Journal of Mathematical Analysis and Applications, 2005, 309:151-166. [8] 郭改慧,李兵方. 具有扩散的Brusselator系统的Hopf分支[J]. 应用数学,2011,24(3):467-473. GUO Gaihui, LI Bingfang. Hopf bifurcation in the Brusselator system with diffusion[J]. Mathematica Applicata, 2011, 24(3):467-473. [9] LV Y H, LIU Z H. Turing-Hopf bifurcation analysis and normal form of a diffusive Brusselator model with gene expression time delay[J]. Chaos, Solitons and Fractals, 2021, 152:111478. [10] OTT E, GREBOGI C, YORKE J A. Controlling Chaos[J]. Physical Review Letters, 1990, 64(11):1196. [11] ALFIFI H Y. Feedback control for a diffusive and delayed Brusselator model: semi-analytical solutions[J]. Symmetry, 2021, 13(4):725-738. [12] HU H, LI Q, LI S. Traveling and standing patterns induced by delay feedback in uniform oscillatory reaction-diffusion system[J]. Chemical Physics Letters, 2007, 447:364-367. [13] 杨晓燕,王乔钰,许慧洁. 一类具有时滞的Brusselator模型的稳定性分析[J]. 陕西理工大学学报(自然科学版),2020,36(3):88-92. YANG Xiaoyan, WANG Qiaoyu, XU Huijie. Stability analysis of a class of Brusselator models with time delay[J]. Journal of Shaanxi University of Technology(Natural Science Edition), 2020, 36(3):88-92. [14] GUREVICH S V, FRIEDRICH R. Instabilities of localized structures in dissipative systems with delayed feedback[J]. Physical Review Letters, 2013, 110(1):014101. [15] GUREVICH S V. Time-delayed feedback control of breathing localized structures in a three-component reaction-diffusion system[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2027): 20140014. [16] YADAV O P, JIWARI R A. Finite element approach to capture Turing patterns of autocatalytic Brusselator model[J]. Journal of Mathematical Chemistry, 2019, 57: 769-789. [17] WOOLLEY T E, BAKER R E, GAFFNEY E A, et al. Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems[J]. Physical Review E, 2012, 85(5):051914. [18] SEIRIN LEE S, GAFFNEY E A. Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays[J]. Bulletin of mathematical biology, 2010, 72:2161-2179. [19] BERETTA E, KUANG Y. Geometric stability switch criteria in delay differential systems with delay dependent parameters[J]. SIAM Journal on Mathematical Analysis, 2002, 33(5):1144-1165. |
[1] | 徐英婷,赵建涛,魏新. 一类具有合作捕获与群体防御的扩散捕食者-食饵模型的动力学分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 104-117. |
[2] | 罗艺华,杜燕飞. 具有非局部竞争和时滞的广食性捕食者-食饵模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2025, 60(4): 72-83. |
[3] | 张峰,梁嘉玮. 带噪声记忆的非零和随机微分博弈问题的充分最大值原理[J]. 《山东大学学报(理学版)》, 2024, 59(10): 46-52. |
[4] | 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88. |
[5] | 王晓,刘重阳,胡电中,刘刚. 1,3-丙二醇间歇发酵中的时滞最优控制[J]. 《山东大学学报(理学版)》, 2024, 59(1): 124-131, 138. |
[6] | 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103. |
[7] | 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91. |
[8] | 许越,韩晓玲. 具有双时滞的媒体效应对西藏地区包虫病控制的影响[J]. 《山东大学学报(理学版)》, 2023, 58(5): 53-62. |
[9] | 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53. |
[10] | 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126. |
[11] | 李蕾,叶永升. 具有Dirichlet有界条件的反应扩散Cohen-Grossberg神经网络指数稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 67-74. |
[12] | 霍林杰,张存华. 具有Holling-Ⅲ型功能反应的捕食扩散系统的稳定性和Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(1): 16-24. |
[13] | 庞玉婷,赵东霞,鲍芳霞. 具有多时滞和多参数的双向环状网络的稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(8): 103-110. |
[14] | 王苗苗,丁小丽,李佳敏. 分数阶随机时滞微分方程的波形松弛方法[J]. 《山东大学学报(理学版)》, 2022, 57(1): 101-110. |
[15] | 沈维,张存华. 时滞食饵-捕食系统的多次稳定性切换和Hopf分支[J]. 《山东大学学报(理学版)》, 2022, 57(1): 42-49. |
|