您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 116-124.doi: 10.6040/j.issn.1671-9352.0.2023.186

• • 上一篇    

具有交错扩散的时滞Brusselator模型的Hopf分支

杨秀楠,邢慧*   

  1. 西安工程大学理学院, 陕西 西安 710048
  • 发布日期:2025-07-25
  • 通讯作者: 邢慧(1982— ),女,副教授,硕士生导师,博士,研究方向为非线性泛函分析及其在微分方程中的应用. ;E-mail:xinghui210@163.com
  • 作者简介:杨秀楠(1992— ),女,硕士研究生,研究方向为非线性泛函分析及其在微分方程中的应用. E-mail:2544114637@qq.com*通信作者:邢慧(1982— ),女,副教授,硕士生导师,博士,研究方向为非线性泛函分析及其在微分方程中的应用. E-mail:xinghui210@163.com
  • 基金资助:
    陕西省自然科学基金项目(2021JQ-662)

Hopf bifurcation of Brusselator model with cross-diffusion and delay

YANG Xiunan, XING Hui*   

  1. School of Science, Xian Polytechnic University, Xian 710048, Shaanxi, China
  • Published:2025-07-25

摘要: 研究带有交错扩散的时滞Brusselator模型。首先应用线性化的方法分析该系统特征方程根的分布,得到系统唯一正平衡点的局部渐近稳定性和Hopf分支存在性;其次分析时滞参数对系统Hopf分支存在性的影响;最后,利用MATLAB软件进行数值模拟来支持理论结果。

关键词: Brusselator模型, 交错扩散, 时滞, Hopf分支

Abstract: In this paper, the Brusselator model with cross-diffusion and delay are studied. Firstly, by analyzing the distribution of the roots of the characterstic equation of the system using linearization method, the local asymptotic stability of the system and the existence of Hopf bifurcation at the unique positive equilibrium point are obtained. Then the effect of time delay parameters on the existence of Hopf bifurcation is analyzed. Finally, numerical simulation is carried out to support the theoretical results using MATLAB.

Key words: Brusselator model, cross-diffusion, delay, Hopf bifurcation

中图分类号: 

  • O175
[1] PRIGOGENE I, LEFEVER R. Symmetry breaking instabilities in dissipative system [J]. The Journal of Chemical Physics, 1968, 48(4):1665-1700.
[2] MURRAY J D. Mathematical biology I: an introduction [M]. 3rd ed. New York: Springer, 2002:175-217.
[3] ERNEUX T, REISS E. Brussellator isolas[J]. SIAM Journal on Applied Mathematics, 1983, 43(6):1240-1246.
[4] LI Y. Hopf bifurcations in general systems of Brusselator type[J]. Nonlinear Analysis: Real World Applications, 2016, 28:32-47.
[5] GHERGU M. Steady-state solutions for a general Brusselator system[J]. Operator Theory: Advances and Application, 2011, 216:153-166.
[6] LI B, WANG M X. Diffusion-driven instability and Hopf bifurcation in Brusselator system[J]. Applied Mathematics and Mechanics, 2008, 29(6):825-832.
[7] PENG R, WANG M X. Pattern formation in the Brusselator system[J]. Journal of Mathematical Analysis and Applications, 2005, 309:151-166.
[8] 郭改慧,李兵方. 具有扩散的Brusselator系统的Hopf分支[J]. 应用数学,2011,24(3):467-473. GUO Gaihui, LI Bingfang. Hopf bifurcation in the Brusselator system with diffusion[J]. Mathematica Applicata, 2011, 24(3):467-473.
[9] LV Y H, LIU Z H. Turing-Hopf bifurcation analysis and normal form of a diffusive Brusselator model with gene expression time delay[J]. Chaos, Solitons and Fractals, 2021, 152:111478.
[10] OTT E, GREBOGI C, YORKE J A. Controlling Chaos[J]. Physical Review Letters, 1990, 64(11):1196.
[11] ALFIFI H Y. Feedback control for a diffusive and delayed Brusselator model: semi-analytical solutions[J]. Symmetry, 2021, 13(4):725-738.
[12] HU H, LI Q, LI S. Traveling and standing patterns induced by delay feedback in uniform oscillatory reaction-diffusion system[J]. Chemical Physics Letters, 2007, 447:364-367.
[13] 杨晓燕,王乔钰,许慧洁. 一类具有时滞的Brusselator模型的稳定性分析[J]. 陕西理工大学学报(自然科学版),2020,36(3):88-92. YANG Xiaoyan, WANG Qiaoyu, XU Huijie. Stability analysis of a class of Brusselator models with time delay[J]. Journal of Shaanxi University of Technology(Natural Science Edition), 2020, 36(3):88-92.
[14] GUREVICH S V, FRIEDRICH R. Instabilities of localized structures in dissipative systems with delayed feedback[J]. Physical Review Letters, 2013, 110(1):014101.
[15] GUREVICH S V. Time-delayed feedback control of breathing localized structures in a three-component reaction-diffusion system[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2027): 20140014.
[16] YADAV O P, JIWARI R A. Finite element approach to capture Turing patterns of autocatalytic Brusselator model[J]. Journal of Mathematical Chemistry, 2019, 57: 769-789.
[17] WOOLLEY T E, BAKER R E, GAFFNEY E A, et al. Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems[J]. Physical Review E, 2012, 85(5):051914.
[18] SEIRIN LEE S, GAFFNEY E A. Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays[J]. Bulletin of mathematical biology, 2010, 72:2161-2179.
[19] BERETTA E, KUANG Y. Geometric stability switch criteria in delay differential systems with delay dependent parameters[J]. SIAM Journal on Mathematical Analysis, 2002, 33(5):1144-1165.
[1] 徐英婷,赵建涛,魏新. 一类具有合作捕获与群体防御的扩散捕食者-食饵模型的动力学分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 104-117.
[2] 罗艺华,杜燕飞. 具有非局部竞争和时滞的广食性捕食者-食饵模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2025, 60(4): 72-83.
[3] 张峰,梁嘉玮. 带噪声记忆的非零和随机微分博弈问题的充分最大值原理[J]. 《山东大学学报(理学版)》, 2024, 59(10): 46-52.
[4] 王一言,赵东霞,高彩霞. 基于时滞反馈的ARZ交通流模型的入口匝道控制[J]. 《山东大学学报(理学版)》, 2024, 59(10): 64-73, 88.
[5] 王晓,刘重阳,胡电中,刘刚. 1,3-丙二醇间歇发酵中的时滞最优控制[J]. 《山东大学学报(理学版)》, 2024, 59(1): 124-131, 138.
[6] 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103.
[7] 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91.
[8] 许越,韩晓玲. 具有双时滞的媒体效应对西藏地区包虫病控制的影响[J]. 《山东大学学报(理学版)》, 2023, 58(5): 53-62.
[9] 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53.
[10] 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126.
[11] 李蕾,叶永升. 具有Dirichlet有界条件的反应扩散Cohen-Grossberg神经网络指数稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 67-74.
[12] 霍林杰,张存华. 具有Holling-Ⅲ型功能反应的捕食扩散系统的稳定性和Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(1): 16-24.
[13] 庞玉婷,赵东霞,鲍芳霞. 具有多时滞和多参数的双向环状网络的稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(8): 103-110.
[14] 王苗苗,丁小丽,李佳敏. 分数阶随机时滞微分方程的波形松弛方法[J]. 《山东大学学报(理学版)》, 2022, 57(1): 101-110.
[15] 沈维,张存华. 时滞食饵-捕食系统的多次稳定性切换和Hopf分支[J]. 《山东大学学报(理学版)》, 2022, 57(1): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!