您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 104-117.doi: 10.6040/j.issn.1671-9352.0.2023.511

• • 上一篇    

一类具有合作捕获与群体防御的扩散捕食者-食饵模型的动力学分析

徐英婷,赵建涛,魏新*   

  1. 黑龙江大学数学科学学院, 黑龙江 哈尔滨 150080
  • 发布日期:2025-04-08
  • 通讯作者: 魏新(1982— ),女,副教授,博士,研究方向为微分方程分支理论的研究及应用. E-mail:weixin@hlju.edu.cn
  • 作者简介:徐英婷(1999— ),女,硕士研究生,研究方向为微分方程分支理论的研究及应用. E-mail:xyingt1999@163.com*通信作者:魏新(1982— ),女,副教授,博士,研究方向为微分方程分支理论的研究及应用. E-mail:weixin@hlju.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11901172);黑龙江省省属高校基本科研业务费(2022-KYYWF-1043,2021-KYYWF-0017)

Dynamical analysis in a diffusive predator-prey model with cooperative hunting and group defense

XU Yingting, ZHAO Jiantao, WEI Xin*   

  1. School of Mathematical Science, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Published:2025-04-08

摘要: 建立具有扩散、合作捕获和群体防御的捕食者-食饵模型,并研究扩散引起的Turing不稳定性以及Turing-Hopf分支的存在性。以扩散作为分支参数,分析该模型共存稳态解的稳定性,通过计算Turing-Hopf分支点附近的规范型,深入探讨系统的复杂动力学性质。此外,通过数值模拟对理论分析的结果进行解释。研究结果表明,系统在Turing-Hopf分支点附近展现出复杂的动力学行为,包括稳态解、齐次周期解、非齐次稳态解和非齐次周期解等。

关键词: 合作捕获, 群体防御, Turing-Hopf分支, 扩散, 捕食者-食饵模型

Abstract: In this paper, we propose a diffusive predator-prey model with cooperative hunting and group defense, and investigate the existence of Turing instability and Turing-Hopf bifurcation induced by diffusion. Taking coefficient of diffusion as bifurcation parameter, we analyze the stability of the coexistence equilibrium, and explore the complex dynamical behaviours of the system by calculating the normal forms near the Turing-Hopf bifurcation points. Moreover, we carry out some numerical simulations to illustrate the theoretical analysis. Our study shows that the system demonstrates complex dynamical behaviours near the Turing-Hopf bifurcation point, including steady-state solutions, homogeneous periodic solutions, non-homogeneous steady-state solutions, and non-homogeneous periodic solutions.

Key words: cooperative hunting, group defense, Turing-Hopf bifurcation, diffusion, predator-prey model

中图分类号: 

  • O175
[1] LOTKA A J. Elements of physical biology[M]. Baltimore Maryland: Williams & Wilkins, 1925.
[2] VOLTERRA V. Fluctuations in the abundance of a species considered mathematically[J]. Nature, 1927, 119(2983):12-13.
[3] COSNER C, DEANGELIS D L, AULT J S, et al. Effects of spatial grouping on the functional response of predators[J]. Theoretical Population Biology, 1999, 56(1):65-75.
[4] HOLLING C S. The components of predation as revealed by a study of small-mammal predation of the european pine sawfly[J]. The Canadian Entomologist, 1959, 91(5):293-320.
[5] KAZARINOFF N D, VAN DEN DRIESSCHE P. A model predator-prey system with functional response[J]. Mathematical Biosciences, 1978, 39(1/2):125-134.
[6] TURCHIN P. Complex population dynamics: a theoretical/empirical synthesis(MPB-35)[M]. New Jersey: Princeton University Press, 2013.
[7] SCHMIDT P A, MECH L D. Wolf pack size and food acquisition[J]. The American Naturalist, 1997, 150(4):513-517.
[8] SCHEEL D, PACKER C. Group hunting behaviour of lions: a search for cooperation[J]. Animal Behaviour, 1991, 41(4):697-709.
[9] COURCHAMP F, MACDONALD D W. Crucial importance of pack size in the African wild dog Lycaon pictus[C] //Animal Conservation Forum. Cambridge: Cambridge University Press, 2001:169-174.
[10] BEREC L. Impacts of foraging facilitation among predators on predator-prey dynamics[J]. Bulletin of Mathematical Biology, 2010, 72:94-121.
[11] ALVES M T, HILKER F M. Hunting cooperation and Allee effects in predators[J]. Journal of Theoretical Biology, 2017, 419:13-22.
[12] BRAZA P A. Predator-prey dynamics with square root functional responses[J]. Nonlinear Analysis: Real World Applications, 2012, 13(4):1837-1843.
[13] BULAI I M, VENTURINO E. Shape effects on herd behavior in ecological interacting population models[J]. Mathematics and Computers in Simulation, 2017, 141:40-55.
[14] DJILALI S. Impact of prey herd shape on the predator-prey interaction[J]. Chaos, Solitons and Fractals, 2019, 120:139-148.
[15] FREEDMAN H I, WOLKOWICZ G S K. Predator-prey systems with group defence: the paradox of enrichment revisited[J]. Bulletin of Mathematical Biology, 1986, 48(5/6):493-508.
[16] KOOI B W, VENTURINO E. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey[J]. Mathematical Biosciences, 2016, 274:58-72.
[17] RAW S N, MISHRA P, KUMAR R, et al. Complex behavior of prey-predator system exhibiting group defense: a mathematical modeling study[J]. Chaos, Solitons and Fractals, 2017, 100:74-90.
[18] XU Chaoqun, YUAN Sanling, ZHANG Tonghua. Global dynamics of a predator-prey model with defense mechanism for prey[J]. Applied Mathematics Letters, 2016, 62:42-48.
[19] VENTURINO E, PETROVSKII S. Spatiotemporal behavior of a prey-predator system with a group defense for prey[J]. Ecological Complexity, 2013, 14:37-47.
[20] DU Yanfei, NIU Ben, WEI Junjie. A predator-prey model with cooperative hunting in the predator and group defense in the prey[J]. Discrete & Continuous Dynamical Systems-Series B, 2022, 27(10).
[21] SONG Yongli, ZHANG Tonghau, PENG Yahong. Turing-Hopf bifurcation in the reaction-diffusion equations and its applications[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 33:229-258.
[1] 李丝雨,杨赟瑞. 一类非对称非局部扩散系统双稳行波解的稳定性[J]. 《山东大学学报(理学版)》, 2025, 60(4): 40-49.
[2] 买阿丽,孙国伟. 捕食者斑块间扩散的集合种群模型的稳定性分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 20-28.
[3] 马田田,李善兵. 具有捕食Allee效应和密度依赖扩散的捕食-食饵模型的共存解[J]. 《山东大学学报(理学版)》, 2025, 60(4): 84-92.
[4] 张赵柳,范小明. 广义分数布朗运动下的双重Heston跳扩散模型欧式期权定价[J]. 《山东大学学报(理学版)》, 2025, 60(3): 60-68.
[5] 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83.
[6] 赵玉凤,刘桂荣. 一类随机捕食系统的平稳分布及其概率密度函数[J]. 《山东大学学报(理学版)》, 2024, 59(10): 74-88.
[7] 艾露露,刘蕴贤. 半导体问题漂移扩散模型的超弱间断Galerkin方法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 10-21.
[8] 张行,焦玉娟,杨进苗. 一类扩散的捕食者-食饵模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 97-105.
[9] 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126.
[10] 韩梦洁,刘俊利. 具有不完全接种的反应扩散禽流感模型[J]. 《山东大学学报(理学版)》, 2023, 58(10): 106-121.
[11] 李蕾,叶永升. 具有Dirichlet有界条件的反应扩散Cohen-Grossberg神经网络指数稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 67-74.
[12] 曹倩,李艳玲,单炜华. 含有猎物避难所和恐惧效应的反应扩散捕食者-食饵模型的动力学[J]. 《山东大学学报(理学版)》, 2023, 58(10): 43-53.
[13] 霍林杰,张存华. 具有Holling-Ⅲ型功能反应的捕食扩散系统的稳定性和Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(1): 16-24.
[14] 孙春杰,张存华. 一类Beddington-DeAngelis-Tanner型扩散捕食系统的稳定性和Turing不稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 83-90.
[15] 安翔,郭精军. 混合次分数跳扩散模型下回望期权的定价及模拟[J]. 《山东大学学报(理学版)》, 2022, 57(4): 100-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!