《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 104-117.doi: 10.6040/j.issn.1671-9352.0.2023.511
• • 上一篇
徐英婷,赵建涛,魏新*
XU Yingting, ZHAO Jiantao, WEI Xin*
摘要: 建立具有扩散、合作捕获和群体防御的捕食者-食饵模型,并研究扩散引起的Turing不稳定性以及Turing-Hopf分支的存在性。以扩散作为分支参数,分析该模型共存稳态解的稳定性,通过计算Turing-Hopf分支点附近的规范型,深入探讨系统的复杂动力学性质。此外,通过数值模拟对理论分析的结果进行解释。研究结果表明,系统在Turing-Hopf分支点附近展现出复杂的动力学行为,包括稳态解、齐次周期解、非齐次稳态解和非齐次周期解等。
中图分类号:
[1] LOTKA A J. Elements of physical biology[M]. Baltimore Maryland: Williams & Wilkins, 1925. [2] VOLTERRA V. Fluctuations in the abundance of a species considered mathematically[J]. Nature, 1927, 119(2983):12-13. [3] COSNER C, DEANGELIS D L, AULT J S, et al. Effects of spatial grouping on the functional response of predators[J]. Theoretical Population Biology, 1999, 56(1):65-75. [4] HOLLING C S. The components of predation as revealed by a study of small-mammal predation of the european pine sawfly[J]. The Canadian Entomologist, 1959, 91(5):293-320. [5] KAZARINOFF N D, VAN DEN DRIESSCHE P. A model predator-prey system with functional response[J]. Mathematical Biosciences, 1978, 39(1/2):125-134. [6] TURCHIN P. Complex population dynamics: a theoretical/empirical synthesis(MPB-35)[M]. New Jersey: Princeton University Press, 2013. [7] SCHMIDT P A, MECH L D. Wolf pack size and food acquisition[J]. The American Naturalist, 1997, 150(4):513-517. [8] SCHEEL D, PACKER C. Group hunting behaviour of lions: a search for cooperation[J]. Animal Behaviour, 1991, 41(4):697-709. [9] COURCHAMP F, MACDONALD D W. Crucial importance of pack size in the African wild dog Lycaon pictus[C] //Animal Conservation Forum. Cambridge: Cambridge University Press, 2001:169-174. [10] BEREC L. Impacts of foraging facilitation among predators on predator-prey dynamics[J]. Bulletin of Mathematical Biology, 2010, 72:94-121. [11] ALVES M T, HILKER F M. Hunting cooperation and Allee effects in predators[J]. Journal of Theoretical Biology, 2017, 419:13-22. [12] BRAZA P A. Predator-prey dynamics with square root functional responses[J]. Nonlinear Analysis: Real World Applications, 2012, 13(4):1837-1843. [13] BULAI I M, VENTURINO E. Shape effects on herd behavior in ecological interacting population models[J]. Mathematics and Computers in Simulation, 2017, 141:40-55. [14] DJILALI S. Impact of prey herd shape on the predator-prey interaction[J]. Chaos, Solitons and Fractals, 2019, 120:139-148. [15] FREEDMAN H I, WOLKOWICZ G S K. Predator-prey systems with group defence: the paradox of enrichment revisited[J]. Bulletin of Mathematical Biology, 1986, 48(5/6):493-508. [16] KOOI B W, VENTURINO E. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey[J]. Mathematical Biosciences, 2016, 274:58-72. [17] RAW S N, MISHRA P, KUMAR R, et al. Complex behavior of prey-predator system exhibiting group defense: a mathematical modeling study[J]. Chaos, Solitons and Fractals, 2017, 100:74-90. [18] XU Chaoqun, YUAN Sanling, ZHANG Tonghua. Global dynamics of a predator-prey model with defense mechanism for prey[J]. Applied Mathematics Letters, 2016, 62:42-48. [19] VENTURINO E, PETROVSKII S. Spatiotemporal behavior of a prey-predator system with a group defense for prey[J]. Ecological Complexity, 2013, 14:37-47. [20] DU Yanfei, NIU Ben, WEI Junjie. A predator-prey model with cooperative hunting in the predator and group defense in the prey[J]. Discrete & Continuous Dynamical Systems-Series B, 2022, 27(10). [21] SONG Yongli, ZHANG Tonghau, PENG Yahong. Turing-Hopf bifurcation in the reaction-diffusion equations and its applications[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 33:229-258. |
[1] | 李丝雨,杨赟瑞. 一类非对称非局部扩散系统双稳行波解的稳定性[J]. 《山东大学学报(理学版)》, 2025, 60(4): 40-49. |
[2] | 买阿丽,孙国伟. 捕食者斑块间扩散的集合种群模型的稳定性分析[J]. 《山东大学学报(理学版)》, 2025, 60(4): 20-28. |
[3] | 马田田,李善兵. 具有捕食Allee效应和密度依赖扩散的捕食-食饵模型的共存解[J]. 《山东大学学报(理学版)》, 2025, 60(4): 84-92. |
[4] | 张赵柳,范小明. 广义分数布朗运动下的双重Heston跳扩散模型欧式期权定价[J]. 《山东大学学报(理学版)》, 2025, 60(3): 60-68. |
[5] | 杜文慧,熊向团. 时间分数阶扩散方程同时反演源项和初值的迭代分数次[J]. 《山东大学学报(理学版)》, 2024, 59(8): 77-83. |
[6] | 赵玉凤,刘桂荣. 一类随机捕食系统的平稳分布及其概率密度函数[J]. 《山东大学学报(理学版)》, 2024, 59(10): 74-88. |
[7] | 艾露露,刘蕴贤. 半导体问题漂移扩散模型的超弱间断Galerkin方法[J]. 《山东大学学报(理学版)》, 2024, 59(10): 10-21. |
[8] | 张行,焦玉娟,杨进苗. 一类扩散的捕食者-食饵模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 97-105. |
[9] | 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126. |
[10] | 韩梦洁,刘俊利. 具有不完全接种的反应扩散禽流感模型[J]. 《山东大学学报(理学版)》, 2023, 58(10): 106-121. |
[11] | 李蕾,叶永升. 具有Dirichlet有界条件的反应扩散Cohen-Grossberg神经网络指数稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 67-74. |
[12] | 曹倩,李艳玲,单炜华. 含有猎物避难所和恐惧效应的反应扩散捕食者-食饵模型的动力学[J]. 《山东大学学报(理学版)》, 2023, 58(10): 43-53. |
[13] | 霍林杰,张存华. 具有Holling-Ⅲ型功能反应的捕食扩散系统的稳定性和Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(1): 16-24. |
[14] | 孙春杰,张存华. 一类Beddington-DeAngelis-Tanner型扩散捕食系统的稳定性和Turing不稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 83-90. |
[15] | 安翔,郭精军. 混合次分数跳扩散模型下回望期权的定价及模拟[J]. 《山东大学学报(理学版)》, 2022, 57(4): 100-110. |
|