您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 21-31.doi: 10.6040/j.issn.1671-9352.4.2024.350

• • 上一篇    下一篇

基于粒概念网络的概念格构造方法

吴海,牛娇娇*,铁文彦,左建坤   

  1. 长江大学计算机科学学院, 湖北 荆州 434000
  • 发布日期:2025-12-10
  • 通讯作者: 牛娇娇(1992— ),女,讲师,硕士生导师,博士,研究方向为概念认知、模糊集理论、粒计算和知识图谱. ;E-mail:niujjiao@163.com
  • 作者简介:吴海(2001— ),男,硕士研究生,研究方向为形式概念分析、粒计算、深度学习. E-mail:13297558122@163.com*通信作者:牛娇娇(1992— ),女,讲师,硕士生导师,博士,研究方向为概念认知、模糊集理论、粒计算和知识图谱. E-mail:niujjiao@163.com
  • 基金资助:
    国家自然科学基金资助项目(12071131);湖北省自然科学基金资助项目(2024AFB345,2023AFB082)

Concept lattice construction method based on granular concept network

WU Hai, NIU Jiaojiao*, TIE Wenyan, ZUO Jiankun   

  1. School of Computer Science, Yangtze University, Jingzhou 434000, Hubei, China
  • Published:2025-12-10

摘要: 针对如何构建形式背景的整个概念格的问题,提出一种基于粒概念的概念格构造方法。通过粒概念生成一般概念的概念学习机制,构建一个包含输入层、粒概念生成层和概念生成层的粒概念网络(granular concept network, GraCN)。对粒概念网络中的概念节点进行去重处理,并添加内涵为属性全集和外延为对象全集的概念节点,构建形式背景的概念格。数值实验证明使用粒概念网络生成概念格的可行性和有效性。

关键词: 形式概念分析, 概念格, 概念格构造, 粒概念网络, 粒计算

Abstract: Aiming at the problem of how to construct the whole concept lattice of the formal context based on the granular concepts, this paper proposes a concept lattice construction method based on the granular concepts. The concept learning mechanism of generating general concepts through granular concepts is discussed, and a granular concept network(GraCN)containing an input layer, a granular concept generation layer and a concept generation layer is constructed based on this mechanism. The concept lattice of the formal context is constructed by deduplicating concept nodes in GraCN and adding the concept node whose intent is the whole attribute set and whose extent is the whole object set. Numerical experiments validate the feasibility and effectiveness of using the granular concept network to generate the concept lattice.

Key words: formal concept analysis, concept lattice, concept lattice construction, granular concept network, granular computing

中图分类号: 

  • TP181
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concept[C] //Proceeding of the 7th International Conference on Formal Concept Analysis. Berlin: Spring, 2009:314-339.
[2] WEI Ling, QI Jianjun. Relation between concept lattice reduction and rough set reduction[J]. Knowledge-Based Systems, 2010, 23(8):934-938.
[3] CHEN Degang, ZHANG Wenxiu, YEUNG D, et al. Rough approximations on a complete completely distributive lattice with applications to generalized rough sets[J]. Information Sciences, 2006, 176(13):1829-1848.
[4] LI Jinhai, REN Yue, MEI Changlin, et al. A comparative study of multigranulation rough sets and concept lattices via rule acquisition[J]. Knowledge-Based Systems, 2016, 91:152-164.
[5] XU Weihua, GUO Doudou, QIAN Yuhua, et al. Two-way concept-cognitive learning method: a fuzzy-based progressive learning [J]. IEEE Transactions on Fuzzy Systems, 2023, 31(6):1885-1899.
[6] LAI Hongliang, ZHANG Dexue. Concept lattices of fuzzy contexts: formal concept analysis vs. rough set theory[J]. International Journal of Approximate Reasoning, 2009, 50(5):695-707.
[7] ZHANG Qiye, XIE Weixian, FAN Lei. Fuzzy complete lattices[J]. Fuzzy Sets and Systems, 2009, 160(16):2275-2291.
[8] WEI Ling, LIU Lin, QI Jianjun, et al. Rules acquisition of formal decision contexts based on three-way concept lattices[J]. Information Sciences, 2020, 516:529-544.
[9] REN Ruisi, WEI Ling. The attribute reductions of three-way concept lattices[J]. Knowledge-Based Systems, 2016, 99:92-102.
[10] QI Jianjun, WEI Ling, YAO Yiyu. Three-way formal concept analysis[C] //Rough Sets and Knowledge Technology: 9th International Conference, RSKT 2014. Shanghai: Springer, 2014:732-741.
[11] SPOTO A, STEFANUTTI L, VIDOTTO G. Knowledge space theory, formal concept analysis, and computerized psychological assessment[J]. Behavior Research Methods, 2010, 42(1):342-350.
[12] POELMANS J, IGNATOV D I, KUZNETSOV S O, et al. Formal concept analysis in knowledge processing: a survey on applications[J]. Expert Systems with Applications, 2013, 40(16):6538-6560.
[13] XU Weihua, LI Wentao. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets[J]. IEEE Transactions on Cybernetics, 2014, 46(2):366-379.
[14] LOIA V, ORCIUOLI F, PEDRYCZ W. Towards a granular computing approach based on formal concept analysis for discovering periodicities in data[J]. Knowledge-Based Systems, 2018, 146:1-11.
[15] LIN Tsau Young. Granular computing I: the concept of granulation and its formal model[J]. International Journal of Granular Computing, Rough Sets and Intelligent Systems, 2009, 1(1):21-42.
[16] PANG Kuo, MARTÍNEZ L, LI Nan, et al. A concept lattice-based expert opinion aggregation method for multi-attribute group decision-making with linguistic information[J]. Expert Systems with Applications, 2024, 237:121485.
[17] ZHAI Yanhui, WANG Tao, LI Deyu. Robust variable threshold fuzzy concept lattice with application to medical diagnosis[J]. International Journal of Fuzzy Systems, 2024, 26(1):344-356.
[18] WANG Lu, PEI Zheng, QIN Keyun. A novel conflict analysis model based on the formal concept analysis[J]. Applied Intelligence, 2023, 53(9):10699-10714.
[19] ZHI Huilai, LI Jinhai. Component similarity based conflict analysis: an information fusion viewpoint[J]. Information Fusion, 2024, 104:102157.
[20] LANG Guangming, YAO Yiyu. Formal concept analysis perspectives on three-way conflict analysis[J]. International Journal of Approximate Reasoning, 2023, 152:160-182.
[21] HU Qian, YUAN Zhong, QIN Keyun, et al. A novel outlier detection approach based on formal concept analysis[J]. Knowledge-Based Systems, 2023, 268:110486.
[22] SHAO Mingwen, HU Zhiyong, WU Weizhi, et al. Graph neural networks induced by concept lattices for classification[J]. International Journal of Approximate Reasoning, 2023, 154:262-276.
[23] GUO Doudou, XU Weihua, QIAN Yuhua, et al. Fuzzy-granular concept-cognitive learning via three-way decision: performance evaluation on dynamic knowledge discovery[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(3):1409-1423.
[24] OJEDA-HERNÁNDEZ M, LÓPEZ-RODRÍGUEZ D, MORA Á. Lexicon-based sentiment analysis in texts using formal concept analysis[J]. International Journal of Approximate Reasoning, 2023, 155:104-112.
[25] KUZNETSOV S O. Learning of simple conceptual graphs from positive and negative examples[C] //European Conference on Principles of Data Mining and Knowledge Discovery. Heidelberg: Springer, 1999:384-391.
[26] FU Huaiguo, NGUIFO E M. A parallel algorithm to generate formal concepts for large data[C] //Concept Lattices: Second International Conference on Formal Concept Analysis, ICFCA 2004. Sydney: Springer, 2004:394-401.
[27] KUZNETSOV S O, OBIEDKOV S A. Comparing performance of algorithms for generating concept lattices[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2002, 14(2/3):189-216.
[28] NOURINE L, RAYNAUD O. A fast algorithm for building lattices[J]. Information Processing Letters, 1999, 71(5/6):199-204.
[29] LINDIG C. Fast concept analysis[J]. Working with Conceptual Structures-Contributions to ICCS, 2000, 2000:152-161.
[30] GODIN R, MINEAU G, MISSAOUI R. Incremental structuring of knowledge bases[C] //Proceedings of the International Knowledge Retrieval, Use, and Storage for Efficiency Symposium. Santa Cruz: KRUSE, 1995, 95:179-193.
[31] GODIN R, MISSAOUI R, ALAOUI H. Incremental concept formation algorithms based on galois(concept)lattices[J]. Computational Intelligence, 1995, 11(2):246-267.
[32] GODIN R, MILI H, MINEAU G W, et al. Design of class hierarchies based on concept,(galois)lattices[J]. Theory and Practice of Object Systems, 1998, 4(2):117-134.
[33] VALTCHEV P, MISSAOUI R. Building concept(galois)lattices from parts: generalizing the incremental methods [C] //International Conference on Conceptual Structures. Heidelberg: Springer, 2001:290-303.
[34] VALTCHEV P, MISSAOUI R, LEBRUN P. A partition-based approach towards constructing galois(concept)lattices[J]. Discrete Mathematics, 2002, 256(3):801-829.
[35] MA Jianmin, ZHANG Wenxiu, LEUNG Y, et al. Granular computing and dual galois connection[J]. Information Sciences, 2007, 177(23):5365-5377.
[36] KANG Xiangping, LI Deyu, WANG Suge, et al. Formal concept analysis based on fuzzy granularity base for different granulations [J]. Fuzzy Sets and Systems, 2012, 203:33-48.
[37] WU Weizhi, LEUNG Y, MI Jusheng. Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 21(10):1461-1474.
[38] LI Jinhai, HUANG Chenchen, QI Jianjun, et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378:244-263.
[39] LI Jinhai, MEI Changlin, XU Weihua, et al. Concept learning via granular computing: a cognitive viewpoint[J]. Information Sciences, 2015, 298:447-467.
[40] LI J H, KUMAR C A, MEI C L, et al. Comparison of reduction in formal decision contexts[J]. International Journal of Approximate Reasoning, 2017, 80:100-122.
[41] 闫梦宇,李金海,刘文奇,等. 带对象结构信息形式背景的概念知识发现与演化[J]. 电子学报,2023,51(1):11-17. YAN Mengyu, LI Jinhai, LIU Wenqi, et al. Conceptual knowledge discovery and evolution in formal context with object structure information[J]. Acta Electronica Sinica, 2023, 51(1):11-17.
[1] 华有霖,邵亚斌,朱学勤. 基于粒球计算的多粒度支持向量回归算法[J]. 《山东大学学报(理学版)》, 2025, 60(7): 104-115.
[2] 方逢祺,吴伟志. 决策集值系统中的知识约简[J]. 《山东大学学报(理学版)》, 2024, 59(5): 82-89.
[3] 吴江,刘德山,于莹莹,庞阔,李晓峰. 基于模糊对象语言概念格的规则提取[J]. 《山东大学学报(理学版)》, 2024, 59(5): 63-69.
[4] 范敏,秦琴,李金海. 基于三支因果力的邻域推荐算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 12-22.
[5] 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法[J]. 《山东大学学报(理学版)》, 2024, 59(5): 35-44.
[6] 陈玉明,郑光宇,焦娜. 基于粒神经网络的多标签学习[J]. 《山东大学学报(理学版)》, 2024, 59(5): 1-11.
[7] 刘忠慧,姜帅,闵帆. 模糊概念集的启发式构造方法及其推荐应用[J]. 《山东大学学报(理学版)》, 2024, 59(3): 14-26.
[8] 陈曜琦,徐伟华,蒋宗颖. 三支概念的恢复集[J]. 《山东大学学报(理学版)》, 2023, 58(12): 52-62.
[9] 韩培磊,魏玲,王振,赵思雨. FCA中的互补概念及其性质与生成[J]. 《山东大学学报(理学版)》, 2022, 57(8): 60-67.
[10] 常丽娜, 魏玲. 基于OE-近似概念格的不完备决策背景的规则提取[J]. 《山东大学学报(理学版)》, 2021, 56(11): 31-37.
[11] 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82.
[12] 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12.
[13] 李双伶,岳晓威,秦克云. 多源形式背景中的粒结构[J]. 《山东大学学报(理学版)》, 2020, 55(5): 46-54.
[14] 刘营营,米据生,梁美社,李磊军. 三支区间集概念格[J]. 《山东大学学报(理学版)》, 2020, 55(3): 70-80.
[15] 姬儒雅,魏玲,任睿思,赵思雨. 毕达哥拉斯模糊三支概念格[J]. 《山东大学学报(理学版)》, 2020, 55(11): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 任燕燕,姜明惠 . 动态平行数据模型中固定效应模型的模型设定问题[J]. J4, 2006, 41(5): 73 -76 .
[2] 郭双建1,董丽红2. 广义H-李代数的Engel定理[J]. 山东大学学报(理学版), 2014, 49(04): 55 -57 .
[3] 高正晖,罗李平. 含分布时滞与阻尼项的三阶非线性微分方程的Philos型振动[J]. J4, 2013, 48(4): 85 -90 .
[4] 王继强, . 一类median问题的近似算法研究[J]. J4, 2006, 41(4): 1 -03 .
[5] 陈宏宇1, 张丽2. 不含弦5-圈和弦6-圈的平面图的线性2荫度[J]. 山东大学学报(理学版), 2014, 49(06): 26 -30 .
[6] 张明,路慧芹 . 二阶非线性脉冲周期边值问题多个正解的存在性[J]. J4, 2009, 44(4): 51 -56 .
[7] 王宗利,刘希玉 . 一种基于流形的蚁群聚类算法[J]. J4, 2008, 43(11): 40 -43 .
[8] 姚庆六 . 两端固定的弱半正梁方程的解和正解[J]. J4, 2006, 41(6): 6 -10 .
[9] 张静静,杨秀萍,刘清,张春秋. 基于Biot理论的腰椎间盘力学响应分析[J]. 山东大学学报(理学版), 2016, 51(11): 93 -98 .
[10] 王贵杰 王文德 姚德利. CAD技术在道路平面交叉口竖向设计中的应用[J]. J4, 2009, 44(11): 79 -82 .