您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (04): 42-48.doi: 10.6040/j.issn.1671-9352.0.2014.157

• 论文 • 上一篇    下一篇

一类非线性分数阶微分方程四点边值问题解的存在性和唯一性

陈强, 贾梅, 张海斌   

  1. 上海理工大学理学院, 上海 200093
  • 收稿日期:2014-04-14 修回日期:2014-09-26 出版日期:2015-04-20 发布日期:2015-04-17
  • 通讯作者: 贾梅(1963-),女,副教授,研究方向为常微分方程理论及应用.E-mail:jiamei-usst@163.com E-mail:jiamei-usst@163.com
  • 作者简介:陈强(1990-),男,硕士研究生,研究方向为常微分方程理论及应用.E-mail:459491257@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11171220);沪江基金资助项目(B14005)

Existence and uniqueness of solutions for nonlinear fractional four-point boundary value problems

CHEN Qiang, JIA Mei, ZHANG Hai-bin   

  1. College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2014-04-14 Revised:2014-09-26 Online:2015-04-20 Published:2015-04-17

摘要: 研究了一类非线性分数阶微分方程四点边值问题解的存在性和唯一性,利用Schauder不动点定理以及压缩映像原理,得到了边值问题解的存在性以及唯一性的充分条件.

关键词: 分数阶微分方程, 四点边值问题, 不动点定理, 存在性与唯一性

Abstract: This paper investigates existence and uniqueness of solutions for a type of four-point boundary value problems with fractional order differential equation.By using the Schauder fixed point theorem and the Banach contraction principle,we obtain the sufficient conditions of the existence and uniqueness of solutions for the nonlinear fractional four-point boundary value problems.

Key words: fixed point theorem, existence and uniqueness, four-point boundary value problems, fractional order differential equation

中图分类号: 

  • O175.8
[1] 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京: 中国科学技术出版社, 2012.
[2] PODLUBNY I. Fraction differential equations[M]. New York: Acad Press, 1999.
[3] DIETHELM K. The analysis of fractional differential equations[M]. Heidelberg: Spring-Verlag, 2010.
[4] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. North-Holland Mathematics Studies, Vol.204, Elsevier Science B V Amsterdam, 2006.
[5] SU Xinwei, LIU Landong. Existence of solution for boundary value problem of nonlinear fractional differential equation[J]. Applied Mathematics A Journal of Chinese Universities: B, 2007, 22(3):291-298.
[6] BAI Zhanbing, SUN Weichen. Existence and multiplicity of positive solutions for singular fractional boundary value problems[J]. Computers and Mathematics with Applications, 2012, 63(9):1369-1381.
[7] SVATOSLAV S. The existence of positive solutions of singular fractional boundary value problems[J]. Computers and Mathematics with Applications, 2011, 62(3):1379-1388.
[8] ZHAO Xiangkui, CHAI Chengwen, GE Weigao. Positive solutions for fractional four-point boundary value problems[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(9):3665-3672.
[9] FENG Meiqiang, ZHANG Xuemei, GE Weigao. New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions[J]. Boundary Value Problems, 2011, 2011:1-20.
[10] 方海琴, 刘锡平, 林乐刚.分数阶微分方程反周期边值问题解的存在性[J]. 山东大学学报:理学版, 2012, 47(6):5-9. FANG Haiqin, LIU Xiping, LIN Legang. Existence of a solution for anti-periodic boundary value problems of fractional differential equations[J]. Journal of Shandong University: Natural Science, 2012, 47(6):5-9.
[11] 窦丽霞, 刘锡平, 金京福,等. 分数阶积分微分方程多点边值问题解的存在性和唯一性[J]. 上海理工大学学报, 2012, 34(1):52-55. DOU Lixia, LIU Xiping, JIN Jingfu, et al. Existence and uniqueness of solutions of multi-point boundary value problems for integro-differential equations of fractional order[J]. Journal of University of Shanghai for Science and Technology, 2012, 34(1):52-55.
[12] NYAMORADI N. Existence of solutions for multi-point boundary value problem for fractional differential equations[J]. Arab Journal of Mathematical Sciences, 2012, 18:165-175.
[13] 王淑, 贾梅, 祁卫杰. 非线性项变号的分数阶微分方程边值问题正解的存在性[J]. 上海理工大学学报, 2013, 35(1):1-6. WANG Shu, JIA Mei, QI Weijie, Existence of positive solutions for a class of fractional differential equations with sign changing nonlinearities[J]. Journal of University of Shanghai for Science and Technology, 2013, 35(1):1-6.
[14] SALEM H A H. On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies[J]. Journal of Computational and Applied Mathematics, 2009, 224(2):565-572.
[15] 秦小娜, 贾梅, 刘帅. 具Caputo导数分数阶微分方程边值问题正解的存在性[J]. 山东大学学报:理学版, 2013, 48(10):62-67. QIN Xiaona, JIA Mei, LIU Shuai, Existence of positive solutions for fractional differential equations boundary value problems with Caputo derivative[J]. Journal of Shandong University: Natural Science, 2013, 48(10):62-67.
[16] BAI Zhanbing, LU Haishen. Positive solution for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Application, 2005, 311(2):495-505.
[1] 申柳肖,赵春. 基于尺度结构的竞争种群系统的最优输入率控制[J]. 山东大学学报(理学版), 2018, 53(7): 21-29.
[2] 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20.
[3] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55.
[4] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[5] 张迪,刘文斌. p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80.
[6] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[7] 荣文萍,崔静. 非Lipschitz条件下一类随机发展方程的μ-概几乎自守解[J]. 山东大学学报(理学版), 2017, 52(10): 64-71.
[8] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[9] 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73.
[10] 仲秋艳,张兴秋. 含参数及p-Laplacian算子的奇异分数阶微分方程积分边值问题的正解[J]. 山东大学学报(理学版), 2016, 51(6): 78-84.
[11] 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88.
[12] 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(04): 56-62.
[13] 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79.
[14] 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74.
[15] 杨雪洁,孙国正*,陈雯. 一个拟线性奇摄动问题的激波解[J]. 山东大学学报(理学版), 2014, 49(04): 79-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!