您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (1): 42-49.doi: 10.6040/j.issn.1671-9352.0.2021.344

• • 上一篇    

时滞食饵-捕食系统的多次稳定性切换和Hopf分支

沈维*,张存华   

  1. 兰州交通大学 数理学院, 甘肃 兰州 730070
  • 发布日期:2021-12-21
  • 作者简介:沈维(1996— ), 女, 硕士研究生, 研究方向为非线性动力系统. E-mail:1130454317@qq.com*通信作者
  • 基金资助:
    国家自然科学基金资助项目(615630224)

Multiple stability switches and Hopf bifurcation in a time-delay predator-prey system

SHEN Wei*, ZHANG Cun-hua   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2021-12-21

摘要: 考虑了具有Holling-Ⅲ型功能反应的时滞食饵-捕食模型。通过分析相应特征方程的根在复平面上的分布, 研究了模型正平衡点的稳定性与Hopf分支,最后利用MATLAB软件包对相应的理论结果进行了数值验证。

关键词: 捕食系统, 稳定性切换, 时滞, Hopf分支

Abstract: A time-delay predator-prey model with Holling type Ⅲ functional response is consider. The stability and Hopf bifurcation of the positive equilibrium point of the model are studied by analyzing the distribution of the roots of the corresponding characteristic equation on the complex plane. Finally, the corresponding theoretical results are verified by MATLAB software package.

Key words: predator-prey system, stability switch, delay, Hopf bifurcation

中图分类号: 

  • O175.26
[1] BAIRAGI N, JANA D. On the stability and Hopf bifurcation of a delay-induced predator-prey system with habitat complexity[J]. Applied Mathematical Modelling, 2011, 35:3255-3267.
[2] 王婷婷, 唐浩彭, 马智慧. 具有生境复杂性效应的时滞捕食-食饵系统[J]. 兰州大学学报(自然科学版), 2018, 54(5):682-690. WANG Tingting, TANG Haopeng, MA Zhihui. Research on a delay-induced predator-prey system with Holling Ⅲ functional response and habitat complexity[J]. Journal of Lanzhou University( Natural Sciences), 2018, 54(5):682-690.
[3] YAN Xiangping, SHI Junping. Stability switches in a logistic population model with mixed instantaneous and delayed density dependence[J]. Journal of Dynamics and Differential Equations, 2017, 29:113-130.
[4] LI Xiaona. The toxic producing Phytoplankton-Zooplankton interaction with Holling III functional response[J]. Advances in Applied Mathematics, 2019, 8(10):1655-1658.
[5] MUKHERIEE D, MAJI C D. Bifurcation analysis of a Holling type II predator-prey model with refuge[J]. Chinese Journal of Physics, 2020, 65:153-162.
[6] WANG Shufan, TANG Haopeng, MA Zhihui. Hopf bifurcation of a multiple-delayed predator-prey system with habitat complexity[J]. Mathematics and Computers in Simulation, 2021, 180:1-23.
[7] YUAN Rui, JIANG Weihua, WANG Yong. Saddle-node- Hopf bifurcation in a modified Leslie-Gower predator-prey model with time-delay and prey harvesting[J]. Journal of Mathematical Analysis and Applications, 2015, 422:1072-1090.
[8] SONG Yongli, HAN Maoan, WEI Junjie. Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays[J]. Physica Dynamics, 2005, 200:185-204.
[9] YAN Xiangping, LIU Fangbin, ZHANG Cunhua. Multiple stability switches and Hopf bifurcation in a damped harmonic oscillator with delayed feedback[J]. Nonlinear Dynamics, 2020, 99(3):2011-2030.
[10] LI Kai, WEI Junjie. Stability and Hopf bifurcation analysis of a prey-predator system with two delays[J]. Chaos, Solitons and Fractals, 2009, 42:2606-2613.
[11] MENG Xinyou, HUO Haifeng, ZHANG Xiaobing. Stability and global Hopf bifurcation in a delayed food web consisting of prey and two predators[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16:4335-4348.
[1] 魏立祥,张建刚,南梦冉,张美娇. 具有时滞的磁通神经元模型的稳定性及Hopf分岔[J]. 《山东大学学报(理学版)》, 2021, 56(5): 12-22.
[2] 马维凤,陈鹏玉. 状态依赖型时滞微分方程的解流形及其C1-光滑性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 92-96.
[3] 马德青,胡劲松. 消费者参考质量存在时滞效应的动态质量改进策略[J]. 《山东大学学报(理学版)》, 2020, 55(9): 101-89.
[4] 王静,伏升茂. 带防御机制的捕食者-食饵模型中恐惧因子的作用[J]. 《山东大学学报(理学版)》, 2020, 55(3): 121-126.
[5] 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36.
[6] 罗强,韩晓玲,杨忠贵. 三阶时滞微分方程边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 33-39.
[7] 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126.
[8] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[9] 董兴林,齐欣. 基于时滞效应的青岛市两阶段科技投入与产出互动关系[J]. 山东大学学报(理学版), 2018, 53(5): 80-87.
[10] 陈丽,林玲. 具有时滞效应的股票期权定价[J]. 山东大学学报(理学版), 2018, 53(4): 36-41.
[11] 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94.
[12] 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110.
[13] 鞠培军,王伟. 多输入多输出线性系统的时滞界问题[J]. 山东大学学报(理学版), 2017, 52(11): 60-64.
[14] 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87.
[15] 王亚军,张申,胡青松,刘峰,张玉婷. 具有测量噪声的时滞多智能体系统的一致性问题[J]. 山东大学学报(理学版), 2017, 52(1): 74-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!