《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (12): 31-39.doi: 10.6040/j.issn.1671-9352.0.2023.187
王雨露,王利萍*,何厚智
WANG Yulu, WANG Liping*, HE Houzhi
摘要: Lusztig在研究W-图的非局部有限性时引入了与Kazhdan-Lusztig系数μ(y,w)相关的一些半线性方程组。本文通过分析( ~)/C 3型仿射Weyl群的基本结构,并利用半线性方程组的性质,计算出全部相关的aλ,λ',进而推导出部分bλ,λ″以及相应的Kazhdan-Lusztig系数。
中图分类号:
[1] KAZHDAN D, LUSZTIG G. Representations of Coxeter groups and Hecke algebras[J]. Invent Math, 1979, 53:165-184. [2] LUSZTIG G. Nonlocal finiteness of a W-graph[J]. Representation Theory of the American Mathematical Society, 1996, 1:25-30. [3] TAGAWA H. On the non-negativity of the first coefficient of Kazhdan-Lusztig polynomials[J]. Algebra, 1995, 177(3):698-707. [4] XI Nanhua. The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group Sn[J]. Algebra, 2005, 1:136-145. [5] JONES B C. Leading coefficients of Kazhdan-Lusztig polynomials for Deodhar elements[J]. Algebraic Combin, 2009, 29(2):229-260. [6] GREEN R M. Leading coefficients of Kazhdan-Lusztig polynomials and fully commutative elements[J]. Algebraic Combin, 2009, 30(2):165-171. [7] SCOTT L, XI Nanhua. Some non-trivial Kazhdan-Lusztig coefficients of an affine Weyl group of type (~overA)n[J]. Science China Mathematics, 2010, 53(8):1919-1930. [8] 郭鹏飞.( ~)/G 2型仿射Weyl群的Kazhdan-Lusztig多项式的首次系数[D]. 广州:华南理工大学, 2015. GUO Pengfei. Kazhdan-Lusztig leading coefficients for an affine Weyl group of type( ~)/G 2[D]. Guangzhou: South China University of Technology, 2015. [9] 陈攀. 仿射Weyl 群的一些非平凡的Kazhdan-Lusztig多项式的首项系数[D]. 北京: 中国科学院研究生院(数学与系统科学研究院),2018. CHEN Pan. Non-rivial Kazhdan-Lusztig coefficients of affine Weyl groups[D]. Beijing: Chinese Academy of Sciences(Academy of Mathematics and Systems Science), 2018. [10] PATIMO L. A combinatorial formula for the coefficient of q in Kazhdan-Lusztig polynomials[J]. International Mathematics Research Notices, 2021, 5:3203-3223. [11] 王利萍. (~overA)2型仿射Weyl群的Kazhdan-Lusztig系数和集合Di[D]. 北京:清华大学, 2012. WANG Liping. Kazhdan-Lusztig coefficients for an affine Weyl group of type (~overA)2 and the set Di[D]. Beijing: Tsinghua University, 2012. [12] WANG Liping. Kazhdan-Lusztig coefficients for an affine Weyl group of type (~overB)2[J]. Journal of Algebra, 2011, 330:22-47. [13] FENG Ge, WANG Liping. Some Kazhdan-Lusztig coefficients of affine Weyl group of type (~overB)2[J]. Algebra Colloq, 2021, 28(4):541-554. [14] 罗新,王利萍,魏玉丽. (~overA)3型仿射Weyl群中aλ,λ'的计算[J]. 北京建筑大学学报, 2019,35(3):74-82. LUO Xin, WANG Liping, WEI Yuli. Calculations of aλ,λ' in the affine Weyl group of type (~overA)3[J]. Journal of Beijing University of Civil Engineering and Architecture, 2019, 35(3):74-82. [15] 魏玉丽,王利萍,罗新. (~overA)3型仿射Weyl群最低双边胞腔上的Kazhdan-Lusztig系数[J]. 数学的实践与认识,2021,51(3):290-301. WEI Yuli, WANG Liping, LUO Xin. The Kazhdan-Lusztig coefficients in the lowest two-sided cells for an affine Weyl group of type (~overA)3[J]. Mathematics in Practice and Theory, 2021, 51(3):290-301. [16] 代佳华,王利萍,魏玉丽.( ~)/C 3型仿射Weyl群最低双边胞腔上的Kazhdan-Lusztig系数[J]. 数学的实践与认识,2021,51(19):264-271. DAI Jiahua, WANG Liping, WEI Yuli. The Kazhdan-Lusztig coefficients in the lowest two-sided cells for an affine Weyl group of type( ~)/C 3[J]. Mathematics in Practice and Theory, 2021,51(19):264-271. [17] 汉弗莱斯. 李代数及其表示理论导引[M]. 北京:世界图书出版公司,2011:63-72. JAMES E H. Introduction to Lie algebras and representation theory[M]. Beijing: World Publishing Corporation, 2011:63-72. [18] 王雨露,王利萍,何厚智.( ~)/C 3型仿射Weyl群中的Φ值[J]. 理论数学,2023,13(12):3475-3480. WANG Yulu, WANG Liping, HE Houzhi. The value of Φ in the affine Weyl group of type( ~)/C 3[J]. Pure Mathematics, 2023, 13(12):3475-3480. |
[1] | 龚何余,舒琴,赵平. 半群 |
[2] | 刘洋,宫春梅. 具有右正则中间幂等元的r-宽大半群[J]. 《山东大学学报(理学版)》, 2024, 59(10): 115-121. |
[3] | 张小红,刘威,王鸿志. 具有某些特性的二极大子群对群结构的影响[J]. 《山东大学学报(理学版)》, 2024, 59(8): 15-19, 27. |
[4] | 高建玲,毛月梅,曹陈辰. SS-拟正规子群对有限群p-幂零性的影响[J]. 《山东大学学报(理学版)》, 2024, 59(8): 9-14. |
[5] | 梁星亮,李宇航. 关于分式S-系的一个注记[J]. 《山东大学学报(理学版)》, 2024, 59(8): 1-8. |
[6] | 李艳霞,海进科. 有限生成交换群到有限群间的同态数量[J]. 《山东大学学报(理学版)》, 2024, 59(6): 103-107. |
[7] | 高百俊,汤菊萍,高志超,宋菊. 关于Sylow p-子群的极大子群的 |
[8] | 李晓妍,乔虎生. 条件(P′ E)对幺半群的刻画[J]. 《山东大学学报(理学版)》, 2024, 59(6): 13-18. |
[9] | 宫春梅,彭娇,白雪娜. 幂等元集为正规带的r-宽大半群上的好同余[J]. 《山东大学学报(理学版)》, 2024, 59(6): 6-12. |
[10] | 吴心怡,乔虎生. 条件(P)与强平坦性[J]. 《山东大学学报(理学版)》, 2024, 59(6): 1-5, 12. |
[11] | 曹建基,王俊新,白鹏飞. 蕴含交换极大子群的极大类3-群上的光滑斜态射[J]. 《山东大学学报(理学版)》, 2024, 59(4): 23-30. |
[12] | 腾文,龙凤山. 微分Lie-Yamaguti超代数的上同调与形变[J]. 《山东大学学报(理学版)》, 2024, 59(2): 32-37,46. |
[13] | 陆瑞霞,乔虎生. S-系的D-多余子系[J]. 《山东大学学报(理学版)》, 2023, 58(11): 71-75. |
[14] | 梁星亮,党允,陈学莹. 关于满足条件(PI)的S-系[J]. 《山东大学学报(理学版)》, 2023, 58(8): 6-12. |
[15] | 凌贤,海进科. 幂零群通过阿贝尔群扩张的整群环挠单位的有理共轭性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 1-5. |
|