您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (4): 50-59.doi: 10.6040/j.issn.1671-9352.0.2024.356

• • 上一篇    

具有周期感染率的年龄结构传染病模型的阈值动力学分析

董颖,吕云飞*   

  1. 天津工业大学数学科学学院, 天津 300387
  • 发布日期:2025-04-08
  • 通讯作者: 吕云飞(1984— ),男,教授,博士生导师,博士,研究方向为微分方程与动力系统. E-mail:lvyunfei@tiangong.edu.cn
  • 作者简介:董颖(2001— ),女,硕士研究生,研究方向为微分方程与生物数学. E-mail:dyingdydy@163.com*通信作者:吕云飞(1984— ),男,教授,博士生导师,博士,研究方向为微分方程与动力系统. E-mail:lvyunfei@tiangong.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12471468);天津市自然科学基金资助项目(23JCZDJC00470)

Threshold dynamics analysis of an age-structured epidemic model with periodic infection rate

DONG Ying, LYU Yunfei*   

  1. School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
  • Published:2025-04-08

摘要: 本文研究了一类具有周期感染率和人口流动的年龄结构SEIR传染病模型。首先证明了模型非负解的存在唯一性。其次利用算子不动点定理和周期更新定理证明了模型地方病周期解的存在性和无病周期解的全局渐近稳定性。通过引入周期解算子在0点的Fréchet导数F〓的谱半径r(F〓),证明了当r(F〓)>1时, 模型存在地方病周期解(疾病爆发); 当r(F〓)<1时, 无病周期解是全局渐近稳定的(疾病灭绝)。

关键词: 年龄结构, 人口流动, 疫苗接种, 周期感染率, 周期解

Abstract: This paper studies an age-structured SEIR epidemic model with periodic infection rate and population flows. Firstly, the existence and uniqueness of non-negative solution of the model are proved. Subsequently, by using the operator fixed-point theorem and the periodic renewal theorem, the existence of endemic periodic solution and the global asymptotic stability of the disease-free periodic solution of the model are demonstrated. By introducing the spectral radius r(F )of the Fréchet derivative F of the periodic solution operator at point 0, it is shown that when r(F )>1, the model has an endemic periodic solution(disease outbreak); when r(F )<1, the disease-free periodic solution is globally asymptotically stable(disease extinction).

Key words: age structure, population mobility, vaccination, periodic infection rate, periodic solution

中图分类号: 

  • O175
[1] 马知恩,周义仓,王稳地,等. 传染病动力学的数学建模与研究[M]. 北京:科学出版社,2004. MA Zhien, ZHOU Yicang, WANG Wendi, et al. Mathematical modelling and research of epidemic dynamical systems[M]. Beijing: Science Press, 2004.
[2] WEBB G B. Theory of nonlinear age-dependent population dynamics[M]. New York and Basel: Marcel Dekker, 1985.
[3] HUANG Jicai, KANG Hao, LU Min, et al. Stability analysis of an age-structured epidemic model with vaccination and standard incidence rate[J]. Nonlinear Analysis: Real World App lications, 2022, 66:103525.
[4] HETHCOTE H, LEVIN S. Periodicity in epidemiological models[J]. Applied Mathematical Ecology, 1989, 18:193-211.
[5] HETHCOTE H. Asymptotic behavior in a deterministic epidemic model[J]. Bulletin of Mathematical Biology, 1973, 35:607-614.
[6] BACÄER N. Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population[J]. Bulletin of Mathematical Biology, 2007, 69(3):1067-1091.
[7] KUNIYA T, INABA H. Endemic threshold results for an age-structured SIS epidemic model with periodic parameters[J]. Mathematical Analysis and Applications, 2013, 402(2):477-492.
[8] KUNIYA T. Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients[J]. Applied Mathematics Letters, 2014, 27:15-20.
[9] KANG Hao, RUAN Shigui, HUANG Qimin. Periodic solutions of an age-structured epidemic model with periodic infection rate[J]. Communications on Pure and Applied Analysis, 2020, 19(10):4955-4972.
[10] OKUWA K, INABA H, KUNIYA T. Mathematical analysis for an age-structured SIRS epidemic model[J]. Mathematical Biosciences Engineering, 2019, 16(5):6071-6102.
[11] KHAN A, ZAMAN G. Global analysis of an age-structured SEIR endemic model[J]. Chaos Soliton Fract, 2018, 108:154-165.
[12] LI Xuezhi, FANG Bin. Stability of an age-structured SEIR epidemic model with infectivity in latent period[J]. Applied Applied Mathematics, 2009, 4(1):218-236.
[13] LI X Z, GUPUR G, ZHU G T. Threshold and stability results for an age-structured SEIR epidemic model[J]. Computers and Mathematics with Applications, 2001, 42(6/7):883-907.
[14] BUSENBERG S, IANNELLI M, THIEME H. Global behavior of an age-structured epidemic model[J]. SIAM Journal on Mathematical Analysis, 1991, 22(4):1065-1080.
[15] MAREK I. Frobenius theory of positive operators: comparison theorems and applications[J]. SIAM Journal on Applied Mathematics, 1970, 19(3):607-628.
[16] SAWASHIMA I. On spectral properties of some positive operators[J]. Natural Science Reports of Ochanomizu University, 1964, 15(2):53-64.
[17] KRASNOSELSKII M A. Positive solutions of operator equations[M]. Groningen: Noordhoff, 1964.
[18] INABA H. Threshold and stability results for an age-structured epidemic model[J]. Mathematical Biology,1990, 28(4):411-434.
[19] LANGLAIS M, BUSENBERG S N. Global behaviour in age structured S.I.S. models with seasonal periodicities and vertical transmission[J]. Journal of Mathematical Analysis and Applications,1997, 213(2):511-533.
[20] BACÄER N, GUERNAUOI S. The epidemic threshold of vector-borne diseases with seasonality[J]. Journal of Mathematical Biology, 2006, 53(3):421-436.
[21] NAKATA Y, KUNIYA T. Global dynamics of a class of SEIRS epidemic models in a periodic environment[J]. Journal of Mathematical Analysis and Applications, 2010, 363(1):230-237.
[1] 范建航,吴奎霖. 一类非自治分段双线性系统周期解[J]. 《山东大学学报(理学版)》, 2024, 59(12): 114-121.
[2] 祁慧敏,雒志学. 具有年龄结构的周期种群动力系统的最优控制[J]. 《山东大学学报(理学版)》, 2023, 58(5): 46-52.
[3] 周子娟,雒志学. 具有年龄结构的n种群非线性竞争系统的最优生育率控制[J]. 《山东大学学报(理学版)》, 2023, 58(10): 75-83.
[4] 王琪,贾建文. 具有公众健康教育影响的随机传染病模型的非平凡周期解[J]. 《山东大学学报(理学版)》, 2021, 56(9): 28-34.
[5] 赵娇. 一类非线性三阶差分方程正周期解的存在性和多解性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 50-58.
[6] 王爱丽. 具有脉冲控制和病毒感染的害虫治理模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 1-8.
[7] 杨虎军,韩晓玲. 一类非自治四阶常微分方程正周期解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 109-114.
[8] 胡永亮,雒志学,梁丽宇,冯宇星. 一类污染环境下具有扩散和年龄结构的随机单种群系统分析[J]. 《山东大学学报(理学版)》, 2019, 54(9): 62-68.
[9] 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41.
[10] 张申贵. 变分方法对变指数脉冲微分系统的应用[J]. 《山东大学学报(理学版)》, 2019, 54(4): 22-28.
[11] 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36.
[12] 张申贵. 一类基尔霍夫型微分系统的周期解[J]. 《山东大学学报(理学版)》, 2019, 54(10): 1-6.
[13] 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126.
[14] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[15] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!