您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 11-15.doi: 10.6040/j.issn.1671-9352.0.2023.397

• • 上一篇    

三类子群的迹对可解群的影响

张佳1,2,何金旅1*,向艳辉1,吴金莲1   

  1. 1.西华师范大学数学与信息学院, 四川 南充 637009;2.东北师范大学数学与统计学院, 吉林 长春 130024
  • 发布日期:2025-11-11
  • 通讯作者: 何金旅(1999— ),男,硕士研究生,研究方向为有限群论. E-mail:2915129865@qq.com
  • 作者简介:张佳(1988— ),男,副教授,博士,硕士生导师,研究方向为有限群论. E-mail:zhangjia198866@126.com
  • 基金资助:
    四川省自然科学基金资助项目(2022NSFSC1843);教育部春晖计划合作科研资助项目(HZKY20220567);中国博士后科学基金资助项目(2023M730545);国家自然科学基金资助项目(12001436)

Influence of traces of some subgroups on solvable groups

ZHANG Jia1,2, HE Jinlü1*, XIANG Yanhui1, WU Jinlian1   

  1. 1. School of Mathematics and Information, China West Normal University, Nanchong 637009, Sichuan, China;
    2. School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, Jilin, China
  • Published:2025-11-11

摘要: 分析容许子群的迹的超可解性质对群的可解性的影响,将所有极大子群分为Fp(指数为素数的极大子群)、 Fc(指数为合数的极大子群),揭示Fc中每个极大子群的迹的幂零性与可解群的结构的联系,将极大子群条件拓展到2-极大子群,得到关于可解群的3个充分必要条件。

关键词: 极大子群, 容许子群, 2-极大子群, 迹, 可解群

Abstract: The influence of the supersolvable property of trace of primitive groups(which cannot be written as a proper intersection of subgroups)on the solvability of groups is analyzed. By dividing all maximal subgroups into two classes Fp (maximal subgroups whose indices are prime number), Fc (maximal subgroups whose indices are composite number), the connection between the nilpotency of the trace of every maximal subgroup in Fc and the structure of solvable groups is studied. By extending maximal subgroups to second maximal subgroups, three sufficient and necessary conditions on solvable groups are obtained.

Key words: maximal subgroup, primitive subgroup, second maximal subgroups, trace, solvable group

中图分类号: 

  • O152.1
[1] 徐明曜. 有限群导引[M]. 北京:科学出版社,2007. XU Mingyao. Introduction to finite groups[M]. Beijing: Since Press, 2007.
[2] DOERK K, HAWKES T. Finite soluble groups[M]. Berlin: De Gruyter, 1992.
[3] GUO Wenbin. The theory of classes of groups[M]. Beijing-New York-Dordrecht-Boston-London: Science Press-Kluwer Academic Publishers, 2000.
[4] HALL P. A characteristic property of soluble groups[J]. Journal of the London Mathematical Society, 1937, 12(47):198-200.
[5] HUPPERT B. Normalteiler und maximale untergruppen endlicher gruppen[J]. Mathematische Zeitschrift, 1954, 60(1):409-434.
[6] JOHNSON D L. A note on supersoluble groups[J]. Canadian Journal of Mathematics, 1971, 23(3):562-564.
[7] FEIT W. An interval in the subgroup lattice of a finite group which is isomorphic to M7[J]. Algebra Universalis,1983, 17:220-221.
[8] WANG Yanming. C-normality of groups and its properties[J]. Journal of Algebra, 1996, 180(3):954-965.
[9] LEVCHUK V M, LIKHAREV A G. Finite simple groups with complemented maximal subgroups[J]. Siberian Mathematical Journal, 2006, 47(4):659-668.
[10] GUO Wenbin, SKIBA A N, TANG Xingzheng. On boundary factors and traces of subgroups of finite groups[J]. Communications in Mathematics and Statistics, 2014, 2(3/4):349-361.
[11] SHI Jiangtao. A finite group in which all non-nilpotent maximal subgroups are normal has a Sylow tower[J]. Hokkaido Mathematical Journal, 2019, 48(2):309-312.
[12] 谢鑫,张佳.某些极大准素c-正规子群对群结构的影响[J].西华师范大学学报(自然科学版),2025,46(4):376-380. XIE Xin, ZHANG Jia.The influence of some maximal primary c-normal subgroups on structure of groups[J].Journal of China West Normal University(Natural Sciences), 2025, 46(4):376-380.
[13] 陈心丹,许丽,缪龙,等. 有限群的2-极大子群的边界因子[J]. 山东大学学报(理学版),2023,58(2):1-5. CHEN Xindan, XU Li, MIAO Long, et al. On the boundary factors of 2-maximal subgroups of finite groups[J]. Journal of Shandong University(Natural Science), 2023, 58(2):1-5.
[14] WEINSTEIN M. Between nilpotent and solvable[M]. Passaic: Polygonal Publishing House, 1982.
[15] ROBINSON D J S. A course in the theory of groups[M]. New York: Springer, 1996.
[16] HUPPERT B, BLACKBURN N. Finite groups III[M]. New York: Springer, 1982.
[17] JANKO Z. Endliche gruppen mit lauter nilpotenten zweitmaximalen unter gruppen[J]. Mathematische Zeitschrift, 1962, 79(1):422-424.
[18] BERKOVIC YA G. The existence of subgroups of a finite non-solvable group[J]. Doklady Akademii Nauk SSSR, 1964, 156(6):1255-1257.
[1] 马小箭,毛月梅. 关于有限群中非σ-次正规子群数量的探讨[J]. 《山东大学学报(理学版)》, 2025, 60(5): 9-12.
[2] 高建玲,毛月梅,曹陈辰. SS-拟正规子群对有限群p-幂零性的影响[J]. 《山东大学学报(理学版)》, 2024, 59(8): 9-14.
[3] 张小红,刘威,王鸿志. 具有某些特性的二极大子群对群结构的影响[J]. 《山东大学学报(理学版)》, 2024, 59(8): 15-19, 27.
[4] 高百俊,汤菊萍,高志超,宋菊. 关于Sylow p-子群的极大子群的$\mathscr{F}$-可补性对群结构的影响[J]. 《山东大学学报(理学版)》, 2024, 59(6): 98-102.
[5] 曹建基,王俊新,白鹏飞. 蕴含交换极大子群的极大类3-群上的光滑斜态射[J]. 《山东大学学报(理学版)》, 2024, 59(4): 23-30.
[6] 陈心丹,许丽,缪龙,刘威. 有限群的2-极大子群的边界因子[J]. 《山东大学学报(理学版)》, 2023, 58(2): 1-5.
[7] 马小箭, 毛月梅. 子群的σ-嵌入系统对有限群结构的影响[J]. 《山东大学学报(理学版)》, 2022, 57(2): 67-71.
[8] 史江涛,任惠瑄. 关于非幂零极大子群皆正规的有限群具有Sylow塔的注记[J]. 《山东大学学报(理学版)》, 2021, 56(8): 58-60.
[9] 徐洋,孙建忠,黄磊,谢晓尧. 基于WiFi定位的区域人群轨迹模型[J]. 《山东大学学报(理学版)》, 2019, 54(5): 8-20.
[10] 姬杰. 一类脉冲Strum-Liouville算子的特征值渐近式和迹公式[J]. 《山东大学学报(理学版)》, 2019, 54(10): 49-56.
[11] 程诚, 邹世佳. 一类Hopf代数的不可约可裂迹模[J]. 山东大学学报(理学版), 2018, 53(4): 11-15.
[12] 康海燕,朱万祥. 位置服务隐私保护[J]. 《山东大学学报(理学版)》, 2018, 53(11): 35-50.
[13] 孟博,鲁金钿,王德军,何旭东. 安全协议实施安全性分析综述[J]. 山东大学学报(理学版), 2018, 53(1): 1-18.
[14] 毛月梅,杨南迎. 有限群的p-幂零性和超可解性[J]. 山东大学学报(理学版), 2016, 51(4): 39-42.
[15] 高辉, 高胜哲, 尹丽. 关于有限群子群的s-θ-完备[J]. 山东大学学报(理学版), 2015, 50(02): 43-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!