您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 40-49.doi: 10.6040/j.issn.1671-9352.0.2023.548

• • 上一篇    

离散给定平均曲率四点边值问题正解的存在性

李志强,路艳琼*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2025-05-19
  • 通讯作者: 路艳琼(1986— ),女,教授,博士,研究方向为常微分方程与差分方程边值问题. E-mail:luyq8610@126.com
  • 作者简介:李志强(1995— ),男,硕士研究生,研究方向为常微分方程与差分方程边值问题. E-mail:2593741990@qq.com*通信作者:路艳琼(1986— ),女,教授,博士,研究方向为常微分方程与差分方程边值问题. E-mail:luyq8610@126.com
  • 基金资助:
    国家自然科学基金资助项目(12361040);西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN-2020-20)

Existence of positive solution for discrete prescribed mean curvature four-point boundary value problems

LI Zhiqiang, LU Yanqiong*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2025-05-19

摘要: 运用不动点定理建立带一维Minkowski平均曲率算子的离散四点边值问题{-(Δφ(Δu(k-1)))=f(k,u(k),Δu(k)),k∈[1,N]Z,u(0)=αu(l1), u(N+1)=βu(l2)(正)解的存在性和多解性, 其中, f:[1,N]Z×R×R→R为连续函数,α, β∈[0,1)且α≠β为常数,l1,l2∈[1,N]Z且l12, φ:(-a,a)→R(02)1/2), [1,N]Z={1,2,…,N}, N≥6为给定的正整数。

关键词: Minkowski平均曲率算子, 正解, 多解性, 不动点定理

Abstract: By using the fixed point theorem, we establish the existence and multiplicity of(positive)solutions for the following discrete four-point boundary value problem with one-dimension Minkowski mean curvature operator{-(Δφ(Δu(k-1)))=f(k,u(k),Δu(k)), k∈[1,N]Z,u(0)=αu(l1), u(N+1)=βu(l2),where f:[1,N]Z×R×R→R is continuous, α, β∈[0,1)are constants and α≠β, l1,l2∈[1,N]Z, l12, φ:(-a,a)→R(02)1/2), [1,N]Z={1,2,3,…,N}, N≥6.

Key words: Minkowski mean curvature operator, positive solution, multiplicity, fixed point theorem

中图分类号: 

  • O175.8
[1] TIMOSHENK S. Theory of elastic stability[M]. New York: McGraw Hill, 1961.
[2] 马如云. 非线性常微分方程非局部问题[M]. 北京:科学出版社,2004. MA Ruyun. Non-local problems of nonlinear ordinary differential equations[M]. Beijing: Science Press, 2004.
[3] II'IN V A, MOISEEV E I. A nonlocal boundary value problem of the first kind for the Sturm-Liouville operator in differential and difference interpretations[J]. Differentsial'nye Uravneniya, 1987, 23(7):1198-1207.
[4] Il'IN V A, MOISEEV E I. A nonlocal boundary value problem of the second kind for the Sturm-Liouville operator[J]. Differentsial'nye Uravneniya, 1987, 23(8):1422-1431.
[5] GUPTA V, CHAITAN P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation[J]. Journal of Mathematical Analysis and Applications, 1992, 168(2):540-551.
[6] MA Ruyun. Positive solutions of a nonlinear three-point boundary-value problem[J]. Elecbtronic Journal of Differential Equations, 1998, 34:1-8.
[7] WEBB J R L. Positive solutions of some three point boundary value problems via fixed point index theory[J]. Nonlinear Analysis, 2001, 47(7):4319-4332.
[8] WEBB J R L. GENNARO INFANTE, Positive solutions of nonlocal boundary value problems[J]. Journal of the London Mathematical Society, 2006, 74(3):673-693.
[9] CAO Daomin, MA Ruyun. Positive solutions to a second order multi-point boundary-value problem[J]. Electronic Journal of Differential Equations, 2000, 65:1-8.
[10] MA Ruyun. A survey on nonlocal boundary value problems[J]. Applied Mathematics E-notes, 2007, 7:257-279.
[11] BINDING P, DRABEK P. Sturm-Liouville theory for the p-Laplacian[J]. Studia Scientiarum Mathematicarum Hungarica, 2003, 40(4):375-396.
[12] WANG Youyu, GE Weigao. Existence of triple positive solutions for multi-point boundary value problems with a one dimensional p-Laplacian[J]. Computers and Mathematics with Applications, 2007, 54(6):793-807.
[13] MA Ruyun, LU Yanqiong, ABUBAKER Ahmed Omer Mohammed, et al. On positive solutions to equations involving the one-dimensional p-Laplacian[J]. Boundary Value Problems, 2013, 2013(125):1-11.
[14] DAI Guowei, MA Ruyun, LU Yanqiong. Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition[J]. Journal of Mathematical Analysis and Applications, 2013, 397(1):119-123.
[15] BEREANU C, MAWHIN J. Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian[J]. Journal of Difference Equations and Applications, 2007, 243(2):536-557.
[16] CHINN A, BELLA B D, JEBELEAN P, et al. A four-point boundary value problem with singular φ-Laplacian[J]. Journal of Fixed Point Theory and Applications, 2019, 21(2):16-66.
[17] MA Ruyun, GAO Hongliang, LU Yanqiong. Global structure of radial positive solutions for a prescribed mean curvature problem in a ball[J]. Journal of Functional Analysis, 2016, 270(7):2430-2455.
[18] DAI Guowei. Bifurcation and nonnegative solutions for problems with mean curvature operator on general domain[J]. Indiana University Mathematics Journal, 2018, 67(6):2103-2121.
[19] MA Ruyun, XU Man, HE Zhiqian. Nonconstant positive radial solutions for Neumann problem involving the mean extrinsic curvature operator[J]. Journal of Mathematical Analysis and Applications, 2020, 484(2):1-13.
[20] LU Yanqiong, LI Zhiqiang, CHEN Tianlan. Multiplicity of solutions for non-homogeneous Dirichlet problem with one-dimension Minkowski-curvature operator[J]. Qualitative Theory of Dynamical Systems, 2022, 21(4):1-21.
[21] DAI Guowei. Some results on surfaces with different mean curvatures in RN+1 and LN+1[J]. Annali Di Matematica Pura Ed Applicata, 2022, 201(1):335-357.
[22] GURBAN Daniela, JEBELEAN Petru. Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities[J]. Journal of Difference Equations and Applications, 2019, 266(9):5377-5396.
[23] LU Yanqiong, JING Zhengqi. Continuum of one-sign solutions of one-dimensional Minkowski-curvature problem with nonlinear boundary conditions[J]. Mathematical Methods in the Applied Sciences, 2023, 46(7):8160-8174.
[24] BEREANU C, MAWHIN J. Boundary value problems for second-order nonlinear difference equations with discrete φ-Laplacian and singular[J]. Journal Of Difference Equations And Applications, 2008, 14(10/11):1099-1118.
[25] BEREANU C, MAWHIN J. Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions[J]. Mathematica Bohemica, 2006, 131(2):145-160.
[26] CHEN Tianlan, MA Ruyun, LIANG Yongwen. Multiple positive solutions of second-order nonlinear difference equations with discrete singular φ-Laplacian[J]. Journal of Difference Equations and Applications, 2019, 25(1):38-55.
[27] ZHOU Zhan, LING Jiaoxiu, Infnitely many positive solutions for a discrete two point nonlinear boundary value problem with φc-Laplacian[J]. Applied Mathematics Letters, 2019, 91:28-34.
[28] LU Yanqiong, MA Ruyun. Multiple positive solutions of the discrete Dirichlet problem with one-dimensional prescribed mean curvature operator[J]. Journal of Applied Analysis and Computation, 2021, 11(2):841-857.
[29] 郭大均. 非线性泛函分析[M]. 济南:山东科学技术出版社,2002. GUO Dajun. Nonlinear functional analysis[M]. Jinan: Shandong Science and Technology Press, 2002.
[30] KRASNOSELSKII M A. Positive solutions of operator equations[M]. [s.l.] : Groningen, 1964.
[31] 马如云. 非线性差分方程的理论及其应用[M]. 北京:科学出版社,2019. MA Ruyun. Theory and application of nonlinear difference equations[M]. Beijing: Science Press, 2019.
[1] 胡芳芳,胡卫敏,张永. 一类具有Hadamard导数的分数阶微分方程积分边值问题正解的存在唯一性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 53-61.
[2] 李存丽. 一类半正二阶Dirichlet边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(12): 96-101.
[3] 范建航,吴奎霖. 一类非自治分段双线性系统周期解[J]. 《山东大学学报(理学版)》, 2024, 59(12): 114-121.
[4] 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67.
[5] 康聪聪. 一类二阶周期边值问题正解的存在性与多解性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 68-76.
[6] 石轩荣. 一类二阶半正问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 89-96.
[7] 雷想兵. 一类半正二阶Neumann边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 82-88.
[8] 徐晶,高红亮. 带有凸-凹非线性项的平均曲率问题正解的个数[J]. 《山东大学学报(理学版)》, 2023, 58(4): 74-81.
[9] 张钰珂,孟新柱. 具有恐惧效应和Crowley-Martin功能反应的随机捕食模型的动力学[J]. 《山东大学学报(理学版)》, 2023, 58(10): 54-66.
[10] 张行,焦玉娟,杨进苗. 一类扩散的捕食者-食饵模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 97-105.
[11] 张纪凤,张伟,韦慧,倪晋波. p-Laplace算子的分数阶Langevin型方程对偶反周期边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 91-100.
[12] 韩卓茹,李善兵. 具有空间异质和合作捕食的捕食-食饵模型的正解[J]. 《山东大学学报(理学版)》, 2022, 57(7): 35-42.
[13] 杨丽娟. 一类带参数四阶边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 35-41.
[14] 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91.
[15] 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!