《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 40-49.doi: 10.6040/j.issn.1671-9352.0.2023.548
• • 上一篇
李志强,路艳琼*
LI Zhiqiang, LU Yanqiong*
摘要: 运用不动点定理建立带一维Minkowski平均曲率算子的离散四点边值问题{-(Δφ(Δu(k-1)))=f(k,u(k),Δu(k)),k∈[1,N]Z,u(0)=αu(l1), u(N+1)=βu(l2)(正)解的存在性和多解性, 其中, f:[1,N]Z×R×R→R为连续函数,α, β∈[0,1)且α≠β为常数,l1,l2∈[1,N]Z且l1
中图分类号:
[1] TIMOSHENK S. Theory of elastic stability[M]. New York: McGraw Hill, 1961. [2] 马如云. 非线性常微分方程非局部问题[M]. 北京:科学出版社,2004. MA Ruyun. Non-local problems of nonlinear ordinary differential equations[M]. Beijing: Science Press, 2004. [3] II'IN V A, MOISEEV E I. A nonlocal boundary value problem of the first kind for the Sturm-Liouville operator in differential and difference interpretations[J]. Differentsial'nye Uravneniya, 1987, 23(7):1198-1207. [4] Il'IN V A, MOISEEV E I. A nonlocal boundary value problem of the second kind for the Sturm-Liouville operator[J]. Differentsial'nye Uravneniya, 1987, 23(8):1422-1431. [5] GUPTA V, CHAITAN P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation[J]. Journal of Mathematical Analysis and Applications, 1992, 168(2):540-551. [6] MA Ruyun. Positive solutions of a nonlinear three-point boundary-value problem[J]. Elecbtronic Journal of Differential Equations, 1998, 34:1-8. [7] WEBB J R L. Positive solutions of some three point boundary value problems via fixed point index theory[J]. Nonlinear Analysis, 2001, 47(7):4319-4332. [8] WEBB J R L. GENNARO INFANTE, Positive solutions of nonlocal boundary value problems[J]. Journal of the London Mathematical Society, 2006, 74(3):673-693. [9] CAO Daomin, MA Ruyun. Positive solutions to a second order multi-point boundary-value problem[J]. Electronic Journal of Differential Equations, 2000, 65:1-8. [10] MA Ruyun. A survey on nonlocal boundary value problems[J]. Applied Mathematics E-notes, 2007, 7:257-279. [11] BINDING P, DRABEK P. Sturm-Liouville theory for the p-Laplacian[J]. Studia Scientiarum Mathematicarum Hungarica, 2003, 40(4):375-396. [12] WANG Youyu, GE Weigao. Existence of triple positive solutions for multi-point boundary value problems with a one dimensional p-Laplacian[J]. Computers and Mathematics with Applications, 2007, 54(6):793-807. [13] MA Ruyun, LU Yanqiong, ABUBAKER Ahmed Omer Mohammed, et al. On positive solutions to equations involving the one-dimensional p-Laplacian[J]. Boundary Value Problems, 2013, 2013(125):1-11. [14] DAI Guowei, MA Ruyun, LU Yanqiong. Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition[J]. Journal of Mathematical Analysis and Applications, 2013, 397(1):119-123. [15] BEREANU C, MAWHIN J. Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian[J]. Journal of Difference Equations and Applications, 2007, 243(2):536-557. [16] CHINN A, BELLA B D, JEBELEAN P, et al. A four-point boundary value problem with singular φ-Laplacian[J]. Journal of Fixed Point Theory and Applications, 2019, 21(2):16-66. [17] MA Ruyun, GAO Hongliang, LU Yanqiong. Global structure of radial positive solutions for a prescribed mean curvature problem in a ball[J]. Journal of Functional Analysis, 2016, 270(7):2430-2455. [18] DAI Guowei. Bifurcation and nonnegative solutions for problems with mean curvature operator on general domain[J]. Indiana University Mathematics Journal, 2018, 67(6):2103-2121. [19] MA Ruyun, XU Man, HE Zhiqian. Nonconstant positive radial solutions for Neumann problem involving the mean extrinsic curvature operator[J]. Journal of Mathematical Analysis and Applications, 2020, 484(2):1-13. [20] LU Yanqiong, LI Zhiqiang, CHEN Tianlan. Multiplicity of solutions for non-homogeneous Dirichlet problem with one-dimension Minkowski-curvature operator[J]. Qualitative Theory of Dynamical Systems, 2022, 21(4):1-21. [21] DAI Guowei. Some results on surfaces with different mean curvatures in RN+1 and LN+1[J]. Annali Di Matematica Pura Ed Applicata, 2022, 201(1):335-357. [22] GURBAN Daniela, JEBELEAN Petru. Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities[J]. Journal of Difference Equations and Applications, 2019, 266(9):5377-5396. [23] LU Yanqiong, JING Zhengqi. Continuum of one-sign solutions of one-dimensional Minkowski-curvature problem with nonlinear boundary conditions[J]. Mathematical Methods in the Applied Sciences, 2023, 46(7):8160-8174. [24] BEREANU C, MAWHIN J. Boundary value problems for second-order nonlinear difference equations with discrete φ-Laplacian and singular[J]. Journal Of Difference Equations And Applications, 2008, 14(10/11):1099-1118. [25] BEREANU C, MAWHIN J. Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions[J]. Mathematica Bohemica, 2006, 131(2):145-160. [26] CHEN Tianlan, MA Ruyun, LIANG Yongwen. Multiple positive solutions of second-order nonlinear difference equations with discrete singular φ-Laplacian[J]. Journal of Difference Equations and Applications, 2019, 25(1):38-55. [27] ZHOU Zhan, LING Jiaoxiu, Infnitely many positive solutions for a discrete two point nonlinear boundary value problem with φc-Laplacian[J]. Applied Mathematics Letters, 2019, 91:28-34. [28] LU Yanqiong, MA Ruyun. Multiple positive solutions of the discrete Dirichlet problem with one-dimensional prescribed mean curvature operator[J]. Journal of Applied Analysis and Computation, 2021, 11(2):841-857. [29] 郭大均. 非线性泛函分析[M]. 济南:山东科学技术出版社,2002. GUO Dajun. Nonlinear functional analysis[M]. Jinan: Shandong Science and Technology Press, 2002. [30] KRASNOSELSKII M A. Positive solutions of operator equations[M]. [s.l.] : Groningen, 1964. [31] 马如云. 非线性差分方程的理论及其应用[M]. 北京:科学出版社,2019. MA Ruyun. Theory and application of nonlinear difference equations[M]. Beijing: Science Press, 2019. |
[1] | 胡芳芳,胡卫敏,张永. 一类具有Hadamard导数的分数阶微分方程积分边值问题正解的存在唯一性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 53-61. |
[2] | 李存丽. 一类半正二阶Dirichlet边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(12): 96-101. |
[3] | 范建航,吴奎霖. 一类非自治分段双线性系统周期解[J]. 《山东大学学报(理学版)》, 2024, 59(12): 114-121. |
[4] | 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67. |
[5] | 康聪聪. 一类二阶周期边值问题正解的存在性与多解性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 68-76. |
[6] | 石轩荣. 一类二阶半正问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 89-96. |
[7] | 雷想兵. 一类半正二阶Neumann边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 82-88. |
[8] | 徐晶,高红亮. 带有凸-凹非线性项的平均曲率问题正解的个数[J]. 《山东大学学报(理学版)》, 2023, 58(4): 74-81. |
[9] | 张钰珂,孟新柱. 具有恐惧效应和Crowley-Martin功能反应的随机捕食模型的动力学[J]. 《山东大学学报(理学版)》, 2023, 58(10): 54-66. |
[10] | 张行,焦玉娟,杨进苗. 一类扩散的捕食者-食饵模型行波解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 97-105. |
[11] | 张纪凤,张伟,韦慧,倪晋波. 带p-Laplace算子的分数阶Langevin型方程对偶反周期边值问题解的存在唯一性[J]. 《山东大学学报(理学版)》, 2022, 57(9): 91-100. |
[12] | 韩卓茹,李善兵. 具有空间异质和合作捕食的捕食-食饵模型的正解[J]. 《山东大学学报(理学版)》, 2022, 57(7): 35-42. |
[13] | 杨丽娟. 一类带参数四阶边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 35-41. |
[14] | 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91. |
[15] | 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63. |
|