您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 89-96.doi: 10.6040/j.issn.1671-9352.0.2022.261

• • 上一篇    

一类二阶半正问题正解的存在性

石轩荣   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2023-03-27
  • 作者简介:石轩荣(1998— ),男,硕士研究生,研究方向为常微分方程与动力系统. E-mail:sxr15209336785@163.com
  • 基金资助:
    国家自然科学基金资助项目(12061064)

Existence of positive solutions for a class of second order semipositone problems

SHI Xuan-rong   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2023-03-27

摘要: 研究二阶半正问题{-u″(t)=λh(t)f(u(t)), t∈(0,1),αu(0)-b(u'(0))u'(0)=0, c(u(1))u(1)+δu'(1)=0正解的存在性,其中λ为正参数,α,δ>0为常数,b,c∈C([0,∞),[0,∞)),h∈C([0,1],[0,∞)), f ∈C([0,∞),R), f>-M(M>0)且f:=limx→∞(f(x))/x=∞。主要定理的证明基于Krasnoselskii不动点定理。

关键词: 正解, 半正问题, 存在性, Krasnoselskii不动点定理

Abstract: The existence of positive solutions for the second order semipositone problem{-u″(t)=λh(t)f(u(t)), t∈(0,1),αu(0)-b(u'(0))u'(0)=0, c(u(1))u(1)+δu'(1)=0 is studied, where λ is a positive parameter,α,δ>0 are constants,b,c∈C([0,∞),[0,∞)),h∈C([0,1],[0,∞)), f∈C([0,∞),R), f >-M(M>0)and f:=limx→∞(f(x))/x=∞。The proof of the main theorems is based on fixed point theorem of Krasnoselskii.

Key words: positive solution, semipositone problem, existence, Krasnoselskii fixed point theorem

中图分类号: 

  • O175.8
[1] HAGHSHENAS H, AFROUZI G A. Three solutions for a second-order Sturm-Liouville equation with impulsive effects[J]. Journal of Applied Mathematics and Informatics, 2020, 38(5/6):407-414.
[2] JIANG Jiqiang, LIU Lishan, WU Yonghong. Second-order nonlinear singular Sturm-Liouville problems with integral boundary conditions[J]. Applied Mathematics and Computation, 2009, 215(4):1573-1582.
[3] GE Weigao, REN Jingli. New existence theorems of positive solutions for Sturm-Liouville boundary value problems[J]. Applied Mathematics and Computation, 2004, 148(3):631-644.
[4] LI Zhilong. Existence of positive solutions of superlinear second-order Neumann boundary value problems[J]. Nonlinear Analysis, 2010, 72(6):3216-3221.
[5] RYNNE B P. Linear second-order problems with Sturm-Liouville-type multi-point boundary conditions[J]. Electronic Journal of Differential Equations, 2012, 146:1-21.
[6] LV Haiyan, SHI Yuming. Error estimate of eigenvalues of perturbed second-order discrete Sturm-Liouville problems[J]. Linear Algebra and its Applications, 2009, 430(8/9):2389-2415.
[7] PINASCO J P, SCAROLA C. A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights[J]. Applied Mathematics and Computation, 2015, 256:819-830.
[8] LIU Yuji. On Sturm-Liouville boundary value problems for second-order nonlinear functional finite difference equations[J]. Journal of Computational and Applied Mathematics, 2008, 216(2):523-533.
[9] MA Ruyun, WANG Suyun. Positive solutions for some semi-positone problems with nonlinear boundary conditions via bifurcation theory[J]. Mediterranean Journal of Mathematics, 2020, 17(1):1-12.
[10] YANG Jingbao, WEI Zhongli. Existence of positive solutions of Sturm-Liouville boundary value problems for a nonlinear singular second order differential system with a parameter[J]. Journal of Applied Mathematics and Computing, 2010, 34(1/2):129-145.
[11] DRAME A K, COSTA D G. On positive solutions of one-dimensional semipositone equations with nonlinear boundary conditions[J]. Applied Mathematics Letters, 2012, 25(12):2411-2416.
[12] ERBE L H, WANG Haiyan. On the existence of positive solutions of ordinary differential equations[J]. Proceedings of the American Mathematical Society, 1994, 120(3):743-748.
[13] DHANYA R, MORRIS Q, SHIVAJI R. Existence of positive radial solutions for superlinear semipositone problems on the exterior of a ball[J]. Journal of Mathematical Analysis and Applications, 2016, 434(2):1533-1548.
[14] AMANN H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J]. SIAM Review, 1976, 18(4):620-709.
[1] 徐晶,高红亮. 带有凸-凹非线性项的平均曲率问题正解的个数[J]. 《山东大学学报(理学版)》, 2023, 58(4): 74-81.
[2] 雷想兵. 一类半正二阶Neumann边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 82-88.
[3] 韩卓茹,李善兵. 具有空间异质和合作捕食的捕食-食饵模型的正解[J]. 《山东大学学报(理学版)》, 2022, 57(7): 35-42.
[4] 任倩,杨和. 一类Riemann-Liouville分数阶发展包含mild解的存在性[J]. 《山东大学学报(理学版)》, 2022, 57(4): 76-84.
[5] 段对花,高承华,王晶晶. 一类k-Hessian方程爆破解的存在性和不存在性[J]. 《山东大学学报(理学版)》, 2022, 57(3): 62-67.
[6] 欧阳柏平,肖胜中. 一类具有空变系数的非线性项的半线性双波动方程解的全局非存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 59-65.
[7] 杨丽娟. 一类带参数四阶边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(9): 35-41.
[8] 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21.
[9] 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63.
[10] 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83.
[11] 侯春娟,李远飞,郭连红. 一类广义不可压Boussinesq方程组解的局部存在性及爆破准则[J]. 《山东大学学报(理学版)》, 2021, 56(2): 97-102.
[12] 刘梦雪, 李杰梅, 姚燕燕. 带有非线性边界条件的四阶边值问题的多解性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 84-91.
[13] 张瑞燕. 一类非线性三阶三点边值问题正解的存在性、不存在性及多解性[J]. 《山东大学学报(理学版)》, 2021, 56(12): 52-58.
[14] 张亚莉. 一类含一阶导数的四阶边值问题正解的全局结构[J]. 《山东大学学报(理学版)》, 2020, 55(8): 102-110.
[15] 王天祥,李永祥. 一类四阶周期边值问题解的存在性与唯一性[J]. 《山东大学学报(理学版)》, 2020, 55(7): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!