《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (8): 48-56.doi: 10.6040/j.issn.1671-9352.0.2022.558
摘要:
设Rep(Q, R)是线性箭图
中图分类号:
1 |
GABRIEL P . Unzelegbare darstellungen Ⅰ[J]. Manuscripta Mathematica, 1972, 6 (1): 71- 103.
doi: 10.1007/BF01298413 |
2 |
ENOCHS E , ESTRADA S . Projective representations of quivers[J]. Communications in Algebra, 2005, 33 (10): 3467- 3478.
doi: 10.1081/AGB-200058181 |
3 |
ENOCHS E , ESTRADA S , GARCÍAROZAS J R . Injective representations of infinite quivers. Applications[J]. Canadian Journal of Mathematics, 2009, 61 (2): 315- 335.
doi: 10.4153/CJM-2009-016-2 |
4 |
ENOCHS E , OYONARTE L , TORRECILLAS B . Flat covers and flat representations of quivers[J]. Communications in Algebra, 2004, 32 (4): 1319- 1338.
doi: 10.1081/AGB-120028784 |
5 |
ESHRAGHI H , HAFEZI R , SALARIAN S . Total acyclicity for complexes of representations of quivers[J]. Communications in Algebra, 2013, 41 (12): 4425- 4441.
doi: 10.1080/00927872.2012.701682 |
6 |
HOSSEINI E . Pure injective representations of quivers[J]. Bulletin of the Korean Mathematical Society, 2013, 50 (2): 389- 398.
doi: 10.4134/BKMS.2013.50.2.389 |
7 |
DALEZIOS G . Abelian model structures on categories of quiver representations[J]. Journal of Algebra and Its Applications, 2020, 19 (10): 2050195.
doi: 10.1142/S0219498820501959 |
8 |
DI Z , ESTRADA S , LIANG L , et al. Gorenstein flat representations of left rooted quivers[J]. Journal of Algebra, 2021, 584, 180- 214.
doi: 10.1016/j.jalgebra.2021.05.008 |
9 |
ODABAŞIS . Completeness of the induced cotorsion pairs in categories of quiver representations[J]. Journal of Pure and Applied Algebra, 2019, 223 (10): 4536- 4559.
doi: 10.1016/j.jpaa.2019.02.003 |
10 | ENOCHS E E , JENDA O M G . Relative homological algebra: Volume 1[M]. Berlin: Walter de Gruyter, 2011. |
11 | STENSTRÖM B . Coherent rings and FP-injective modules[J]. Journal of the London Mathematical Society, 1970, (2): 323- 329. |
12 | HOLM H , JORGENSEN P . Cotorsion pairs in categories of quiver representations[J]. Kyoto Journal of Mathematics, 2019, 59 (3): 575- 606. |
13 | BRAVO D, GILLESPIE J, HOVEY M. The stable module category of a general ring[EB/OL]. 2014: arXiv: 1405.5768. https://arxiv.org/abs/1405.5768 |
14 | 王兴. Gorenstein AC-同调维数有限性的若干判别准则[D]. 兰州: 兰州交通大学, 2021. |
WANG Xing. Some criteria for the finiteness of gorenstein AC-homology dimension[D]. Lanzhou: Lanzhou Jiaotong University, 2021. | |
15 | 孙情, 杨刚. 箭图表示的绝对Clean性质[J]. 西南师范大学学报(自然科学版), 2022, 47 (2): 16- 20. |
SUN Qing , YANG Gang . Absolutely cleanness of quiver representations[J]. Journal of Southwest China Normal University (Natural Science Edition), 2022, 47 (2): 16- 20. | |
16 |
BRAVO D , ESTRADA S , IACOB A . FPn-injective, FPn-flat covers and preenvelopes, and Gorenstein AC-flat covers[J]. Algebra Colloquium, 2018, 25 (2): 319- 334.
doi: 10.1142/S1005386718000226 |
[1] | 罗亚东,杨刚. Noetherian环上的Gorenstein余挠模[J]. 《山东大学学报(理学版)》, 2023, 58(8): 38-42. |
[2] | 唐国亮. 张量环上Gorenstein投射模的构造[J]. 《山东大学学报(理学版)》, 2023, 58(8): 33-37. |
[3] | 陈美卉, 梁力. 顿范畴中的强Gorenstein投射对象[J]. 《山东大学学报(理学版)》, 2021, 56(8): 81-85. |
[4] | 赵跳,章超. 自内射Nakayama代数的q-Cartan矩阵[J]. 《山东大学学报(理学版)》, 2020, 55(10): 46-51. |
[5] | 郭寿桃,王占平. 正合零因子下模的Gorenstein同调维数[J]. 山东大学学报(理学版), 2018, 53(10): 17-21. |
[6] | 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14-16. |
[7] | 卢博, 禄鹏. 复形的 FR-内射维数与 FR-平坦维数[J]. 山东大学学报(理学版), 2018, 53(6): 1-6. |
[8] | 杨春花. 关于复形的Gc-内射维数的一个注记[J]. 山东大学学报(理学版), 2017, 52(11): 82-86. |
[9] | 王小青,梁力. 强余挠模的忠实平坦余基变换[J]. 山东大学学报(理学版), 2017, 52(11): 92-94. |
[10] | 罗肖强,邢建民. Ding gr-内射模和Ding gr-平坦模[J]. 山东大学学报(理学版), 2017, 52(11): 87-91. |
[11] | 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89. |
[12] | 徐辉,赵志兵. 相对无挠模[J]. 山东大学学报(理学版), 2017, 52(8): 75-80. |
[13] | 孙维昆,林汉兴. 单点扩张代数的表示维数[J]. 山东大学学报(理学版), 2016, 51(6): 85-91. |
[14] | 程海霞,殷晓斌. Abelian范畴中Gorenstein内射对象[J]. 山东大学学报(理学版), 2016, 51(2): 79-84. |
[15] | 谢宗真,张孝金. 所有τ-刚性模是投射模的代数[J]. 山东大学学报(理学版), 2016, 51(2): 16-20. |
|