《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (12): 121-129.doi: 10.6040/j.issn.1671-9352.0.2024.190
陈潇,周文学*,侯泽蓉
CHEN Xiao, ZHOU Wenxue*, HOU Zerong
摘要: 研究一类半线性隐式脉冲Conformable分数阶微分方程三点边值问题解的存在性与唯一性。利用Schaefer不动点定理和Banach压缩映射原理分别得到分数阶微分方程解的存在性与唯一性的充分条件,并举例验证主要结论的适用性和可行性。
中图分类号:
| [1] 于鹏艳,侯成敏. 一类带有Slit-strips型积分边值条件的分数阶微分方程及微分包含解的存在性[J]. 黑龙江大学自然科学学报,2022,39(1):8-17. YU Pengyan, HOU Chengmin. The existence of solutions for a class of fractional differential equations and inclusions with Slit-strips type integral boundary conditions[J]. Journal of Natural Science of Heilongjiang University, 2022, 39(1):8-17. [2] 邬忆萱,寇春海. 一类分数阶时滞微分系统的精确解及Hyers-Ulam稳定性[J]. 东华大学学报(自然科学版),2024,50(1):152-162. WU Yixuan, KOU Chunhai. Exact solution and Hyers-Ulam stability of a class of fractional delay differential systems[J]. Journal of Donghua University(Natural Science), 2024, 50(1):152-162. [3] BOUAOUID M, HILAL K, HANNABOU M. Integral solutions of nondense impulsive conformable-fractional differential equations with nonlocal condition[J]. Journal of Applied Analysis, 2021, 27(2):187-197. [4] ABDELJAWAD T. On conformable fractional calculus[J]. Journal of Computational and Applied Mathematics, 2015, 279:57-66. [5] 吴亚斌,周文学,宋学瑶. 带p-Laplacian算子的半线性分数阶脉冲微分方程解的存在性与唯一性[J]. 云南大学学报(自然科学版),2023,45(1):9-17. WU Yabin, ZHOU Wenxue, SONG Xueyao. Existence and uniqueness of solutions for semi-linear fractional impulsive differential equation with p-Laplacian operator[J]. Journal of Yunnan University(Natural Sciences Edition), 2023, 45(1):9-17. [6] 王佳丽,彭田,胡卫敏. 分数阶p-Laplacian脉冲微分方程边值问题解的存在性与唯一性[J]. 数学的实践与认识,2021,51(14):284-292. WANG Jiali, PENG Tian, HU Weimin. The existence and uniqueness of solutions for the boundary value problem of fractional impulsive difference equation with p-Laplacian operator[J]. Mathematics in Practice and Theory, 2021, 51(14):284-292. [7] TREANBUCHA C, SUDSUTAD W. Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation[J]. AIMS Mathematics, 2021, 6(7):6647-6686. [8] ASAWASAMRIT S, NTOUYAS S K, THIRAMANUS P, et al. Periodic boundary value problems for impulsive conformable fractional integro-differential equations[J]. Boundary Value Problems, 2016(1):122. [9] AGARWAL R, HRISTOVA S, O'REGAN D. Mittag-Leffler stability for impulsive Caputo fractional differential equations[J]. Differential Equations and Dynamical Systems, 2021, 29(3):689-705. [10] LIANG J, MU Y Y, XIAO T J. Impulsive differential equations involving general conformable fractional derivative in Banach spaces[J]. Revista de La Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116(3):114. [11] MARTYNYUK A, STAMOV G, STAMOVA I, et al. Formulation of impulsive ecological systems using the conformable calculus approach: qualitative analysis[J]. Mathematics, 2023,11(10):2221. [12] AHMAD B, ALGHANMI M, ALSAEDI A, et al. On an impulsive hybrid system of conformable fractional differential equations with boundary conditions[J]. International Journal of Systems Science, 2020, 51(5):958-970. [13] KHALIL R, HORANI M, YOUSEF A, et al. A new definition of fractional derivative[J]. Journal of Computational and Applied Mathematics, 2014, 264:65-70. [14] TATE S, DINDE H T. Existence and uniqueness results for nonlinear implicit fractional differential equations with nonlocal conditions[J]. Palestine Journal of Mathematics, 2020, 9(1):212-219. [15] WAN F, LIU X P, JIA M. Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions[J]. AIMS Mathematics, 2022, 7(4):6066-6083. [16] ABDELJAWAD T. On conformable fractional calculus[J]. Journal of Computational and Applied Mathematics, 2015, 279:57-66. [17] 王声望,郑维行. 实变函数与泛函分析概要:第2册[M]. 北京:高等教育出版社,2010. WANG Shengwang, ZHENG Weixing. Summary of real variable functions and functional analysis(Volume 2)[M]. Beijing: Higher Education Press, 2010. [18] GRANAS A, DUGUNDJI J. Fixed point theory[M] // New York: Springer, 2003:9-84. [19] KATUGAMPOLA U N. A new approach to generalized fractional derivatives[J]. Bulletin of Mathematical Analysis and Applications, 2014, 6(4):1-15. |
| [1] | 郑艳萍,杨慧,王文霞. 一类含有p-Laplacian算子的带有参数及分数阶导数的分数阶微分方程边值问题唯一正解的存在性[J]. 《山东大学学报(理学版)》, 2025, 60(12): 110-120. |
| [2] | 杨国萍,刘健. 非齐次Neumann边界条件下具有p-Laplacian算子的脉冲方程解的存在数量[J]. 《山东大学学报(理学版)》, 2024, 59(8): 42-47. |
| [3] | 张伟,付欣雨,倪晋波. 分数阶耦合系统循环周期边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 45-52. |
| [4] | 杜睿娟. 一类半直线上三阶多点边值问题在dim Ker L=3共振情形下解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(4): 38-44. |
| [5] | 刘慧娟Symbol`@@. 二阶微分方程三点边值问题定号解的存在性[J]. 《山东大学学报(理学版)》, 2024, 59(12): 79-86. |
| [6] | 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91. |
| [7] | 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67. |
| [8] | 康聪聪. 一类二阶周期边值问题正解的存在性与多解性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 68-76. |
| [9] | 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91. |
| [10] | 雷想兵. 一类半正二阶Neumann边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(4): 82-88. |
| [11] | 李蕾,叶永升. 具有Dirichlet有界条件的反应扩散Cohen-Grossberg神经网络指数稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 67-74. |
| [12] | 李宁,顾海波,马丽娜. 星图上的一类非线性Caputo序列分数阶微分方程边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2022, 57(7): 22-34. |
| [13] | 王凤霞,熊向团. 非齐次热方程侧边值问题的拟边值正则化方法[J]. 《山东大学学报(理学版)》, 2021, 56(6): 74-80. |
| [14] | 原田娇,李强. 一类脉冲发展方程IS-渐近周期mild解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(6): 10-21. |
| [15] | 杨晓梅,路艳琼,王瑞. 二阶离散Neumann边值问题的Ambrosetti-Prodi型结果[J]. 《山东大学学报(理学版)》, 2021, 56(2): 64-74. |
|