您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 130-133.doi: 10.6040/j.issn.1671-9352.0.2023.324

• • 上一篇    

十六维Taft代数量子偶的幂等元

殷泽涛,胡承超,陈惠香   

  1. 扬州大学数学科学学院, 江苏 扬州 225002
  • 发布日期:2025-11-11
  • 作者简介:殷泽涛(2000— ),男,硕士,研究方向为Hopf代数及其表示. E-mail:3375737927@qq.com
  • 基金资助:
    国家自然科学基金资助项目(12071412)

The idempotents of the quantum double of 16-dimensional Taft algebra

YIN Zetao, HU Chengchao, CHEN Huixiang   

  1. School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Published:2025-11-11

摘要: 研究十六维Taft代数量子偶的幂等元,基于Taft代数量子偶的已知结论,构造并给出了十六维Taft代数量子偶的一个本原正交幂等元完全集。

关键词: Hopf代数, Taft代数, 量子偶, 幂等元, 本原幂等元

Abstract: The idempotents of the quantum double of 16-dimensional Taft algebra are investigated. According to the known conclusion of the quantum double of Taft algebra, a complete set of primitive orthogonal idempotents of the quantum double of 16-dimensional Taft algebra are constructed.

Key words: Hopf algebra, Taft algebra, quantum double, idempotent, primitive idempotent

中图分类号: 

  • O153.1
[1] DRINFELD V G. Hopf algebras and the quantum Yang-Baxter equation(Russian)[J]. Doklady Akademii Nauk SSSR, 1985, 283(5):1060-1064.
[2] TAFT E J. The order of the antipode of a finite-dimensional Hopf algebra[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(11):2631-2633.
[3] HENNINGS M A. Invariants of links and 3-manifolds obtained from Hopf algebras[J]. Journal of London Mathematical Society, 1996, 54(3):594-624.
[4] 陈晨,高营营,陈惠香. 九维Taft代数上lazy 2-上闭链[J]. 山东大学学报(理学版),2020,55(2):73-78. CHEN Chen, GAO Yingying, CHEN Huixiang. The lazy 2-cocycles on the 9-dimensional Taft algebra[J]. Journal of Shandong University(Natural Science), 2017, 55(2):73-78.
[5] CHEN Huixiang. A class of noncommutative and noncocommutative Hopf algebras-the quantum version[J]. Communications in Algebra, 1999, 27(10):5011-5023.
[6] CHEN Huixiang. Irreducible representations of a class of quantum doubles[J]. Journal of Algebra, 2000, 225(1):391-409.
[7] CHEN Huixiang. Finite-dimensional representations of a quantum double[J]. Journal of Algebra, 2002, 251(2):751-789.
[8] CHEN Huixiang. Representations of a class of Drinfelds doubles[J]. Communications in Algebra, 2005, 33(8):2809-2825.
[9] ZHANG Yun, WU Feng, LIU Ling, et al. Grothendieck groups of a class of quantum doubles[J]. Algebra Colloquium, 2008, 15(3):431-448.
[10] CHENHuixiang. The Green ring of Drinfeld double D(H4)[J]. Algebras and Representation Theory, 2014, 17(5):1457-1483.
[11] LI Yunnan, HU Naihong. The Green rings of the 2-rank Taft algebras and its two relative twisted[J]. Journal of Algebra, 2014, 410(2):1-35.
[12] CHEN H X, MOHAMMED H S E, LIN W J, et al. The projective class rings of a family of pointed Hopf algebras of rank two[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2016, 23(5):693-711.
[13] CHEN H X, MOHAMMED H S E, SUN H. Indecomposable decomposition of tensor products of modules over Drinfeld doubles of Taft algebras[J]. Journal of Pure Applied Algebra, 2017, 221(11):2752-2790.
[14] SUN H, MOHAMMED H S E, LIN W J, et al. Green rings of Drinfeld doubles of Taft algebras[J]. Communications in Algebra, 2020, 48(9):3933-3947.
[15] BENKART G, BISWAL R, KIRKMAN E, et al. Tensor representations for the Drinfeld double of the Taft algebra[J]. Journal of Algebra, 2022, 606(3):764-797.
[16] FERRARO L, KIRKMAN E, MOORE W F, et al. Three infinite families of reflection Hopf algebras[J]. Journal of Pure and Applied Algebra, 2020, 224(8):106315.
[17] KIRKMAN E, ZHANGJian. The Jacobian, reflection arrangement and discriminant for reflection Hopf algebras[J]. International Mathematics Research Notices, 2021, 13(4):9853-9907.
[18] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Rhode Island: AMS, 1993.
[19] KASSEL C. Quantum groups[M]. New York: Springer, 1995.
[1] 阮礼敏,苟昌胜,赵平. 半群P On,r的幂等元秩[J]. 《山东大学学报(理学版)》, 2025, 60(5): 20-24.
[2] 王忠伟. 余交换post-Hopf代数上的post-Hopf模结构定理[J]. 《山东大学学报(理学版)》, 2024, 59(12): 24-30.
[3] 胡蜜,孙华,李立斌. 八维Radford Hopf代数量子偶的Hopf代数自同构群[J]. 《山东大学学报(理学版)》, 2024, 59(12): 40-45.
[4] 刘洋,宫春梅. 具有右正则中间幂等元的r-宽大半群[J]. 《山东大学学报(理学版)》, 2024, 59(10): 115-121.
[5] 龚何余,舒琴,赵平. 半群$\mathscr{C} \mathscr{F}_{(n, r)}$的幂等元秩[J]. 《山东大学学报(理学版)》, 2024, 59(10): 122-126.
[6] 王尧,陈蒋欢,任艳丽. J-clean环[J]. 《山东大学学报(理学版)》, 2023, 58(6): 1-8.
[7] 孙华,邹健,赵汝菊. 8维Radford Hopf代数的Green代数的自同构群[J]. 《山东大学学报(理学版)》, 2023, 58(11): 61-70.
[8] 李诗雨,陈晨,陈惠香. 二维非Abel李代数包络代数Ore扩张的不可约表示[J]. 《山东大学学报(理学版)》, 2022, 57(12): 75-80.
[9] 张雨欣,郑斯航,房莹,郑慧慧,张良云. Rota-Baxter配对模系统和弯曲Rota-Baxter配对模系统[J]. 《山东大学学报(理学版)》, 2021, 56(8): 6-14.
[10] 马帅英,张建华. 三角代数上的一类非全局高阶可导非线性映射[J]. 《山东大学学报(理学版)》, 2021, 56(2): 48-55.
[11] 张传军,赵海清. 半群PCn的极大幂等元生成子半群[J]. 《山东大学学报(理学版)》, 2021, 56(12): 7-10.
[12] 郑纪文,程智. (强)J-*-三幂等-clean环[J]. 《山东大学学报(理学版)》, 2020, 55(8): 13-19.
[13] 李芳淑,李林涵,张良云. 3-莱布尼兹代数及其Rota-Baxter算子的构造[J]. 《山东大学学报(理学版)》, 2020, 55(4): 48-53.
[14] 史国栋. 群分次Hopf代数的第一基本定理与Long dimodules[J]. 《山东大学学报(理学版)》, 2020, 55(4): 25-31.
[15] 庞永锋,魏银,王权. Drazin序的若干性质[J]. 《山东大学学报(理学版)》, 2020, 55(2): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!