《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (9): 28-34.doi: 10.6040/j.issn.1671-9352.0.2020.519
• • 上一篇
王琪,贾建文*
WANG Qi, JIA Jian-wen*
摘要: 建立并讨论了一个具有公众健康教育和周期系数的随机SIS传染病模型,首先研究了该模型中疾病的灭绝与持续性,然后,通过使用Hasminskiis 定理,得到该随机模型至少存在一个T-周期解的充分条件。
中图分类号:
[1] COLLINSON S, KHAN K, HEFFERNAN J M. The effects of media reports on disease spread and important public health measurements[J]. PLoS One, 2015, 10(11):e01414423. [2] KAUR N, GHOSH M, BHATIA S S. Modeling and analysis of an SIRS epidemic model with effect of awareness programs by media[J]. International Journal of Mathematical, Computational, Natural and Physical Engineering, 2014, 8(1):233-239. [3] MISRA A K, SHARMA A, SHUKLA J B. Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases[J]. Mathematical and Computer Modeling, 2011, 53(5):1221-1228. [4] FUNK S, GILAD E, JANSEN V A A. Endemic disease awareness and local behaviour response[J]. Journal of Theoretical Biology, 2012, 264(2):501-509. [5] KUMAR A, SRIVASTAVA P K, TAKEUCHI Y. Modeling the role of information and limited optional treatment on disease prevalence[J]. Journal of Theoretical Biology, 2017, 414:103-119. [6] LI Guihua, DONG Yiying. Dynamic modelling of the impact of public health education on the control of emerging infectious disease[J]. Journal of Biological Dynamics, 2019, 13(1):501-517. [7] LIN Yuguo, JIANG Daqing, LIU Taihui. Nontrivial periodic solution of a stochastic epidemic model with seasonal variation[J]. Applied Mathmatics Letters, 2015, 45:103-107. [8] LIU Qun, JIANG Daqing, SHI Ningzhong, et al. Nontrivial periodic solution of a stochastic nonautonomous SISV epidemic model[J]. Physica A Statistical Mcchanics & Its Applications, 2016, 462:837-845. [9] ZHANG Weiwei, MENG Xinzhu. Stochastic analysis of a novel nonautonomous periodic SIRS epidemic system with random disturbances[J]. Physica A Statistical Mcchanics & Its Applications, 2018, 429:1290-1301. [10] KHASMINSKII R. Stochastic stability of differential equations[M]. Berlin: Springer, 2012. [11] MAO Xuerong. Stochastic differential equations and applications[M]. [S.l.] : Elsevier, 2011. |
[1] | 王爱丽. 具有脉冲控制和病毒感染的害虫治理模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 1-8. |
[2] | 杨虎军,韩晓玲. 一类非自治四阶常微分方程正周期解的存在性[J]. 《山东大学学报(理学版)》, 2020, 55(6): 109-114. |
[3] | 方舒,张太雷,李志民. 一类具有心理效应的海洛因毒品传播随机模型[J]. 《山东大学学报(理学版)》, 2020, 55(1): 12-22. |
[4] | 陈瑞鹏,李小亚. 带阻尼项的二阶奇异微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(8): 33-41. |
[5] | 高建忠,张太雷. 一类具有随机效应的SIRI传染病模型的定性分析[J]. 《山东大学学报(理学版)》, 2019, 54(7): 89-99. |
[6] | 张申贵. 变分方法对变指数脉冲微分系统的应用[J]. 《山东大学学报(理学版)》, 2019, 54(4): 22-28. |
[7] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[8] | 张申贵. 一类基尔霍夫型微分系统的周期解[J]. 《山东大学学报(理学版)》, 2019, 54(10): 1-6. |
[9] | 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126. |
[10] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
[11] | 谭韧,殷肖川,焦贤龙,廉哲,陈玉鑫. 一种软件定义APT攻击移动目标防御网络架构[J]. 山东大学学报(理学版), 2018, 53(1): 38-45. |
[12] | 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17. |
[13] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[14] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
[15] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
|