《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (4): 22-28.doi: 10.6040/j.issn.1671-9352.0.2018.279
张申贵
ZHANG Shen-gui
摘要: 利用变分方法研究一类带有非局部系数的变指数脉冲微分系统。当非线性项在零点附近次线性增长时,根据变化的Clark定理获得了多重周期解的存在性结果。
中图分类号:
[1] NIETO J J, RODRIGUEZ-LOPEZ R. New comparison results for impulsive integro-differential equations and applications[J]. J Math Anal Appl, 2007, 328(2):1343-1368. [2] NIETO J J, OREGAN D. Variational approach to impulsive differential equations[J]. Nonlinear Anal, 2009, 10(2):680-690. [3] NIETO J J. Variational formulation of a damped Dirichlet impulsive problem[J]. Applied Mathematics Letters, 2010, 23(8):940-942. [4] TIAN Yu, GE Weigao. Applications of variational methods to boundary value problem for impulsive differential equations[J]. Proceedings of the Edinburgh Mathematical Society, 2008, 51(1):509-527. [5] ZHOU Jianwei, LI Yongkun. Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects J]. Nonlinear Anal, 2010, 72(8):1594-1603. [6] 毛安民, 张琳. 变分方法对一类p阶超线性脉冲微分方程的应用[J].中国科学(数学), 2016, 46(12):1845-1862. MAO Anmin, ZHANG Lin. Applications of variational method to impulsive p-Laplacian problem with superlinear impulses[J]. Scisin Math, 2016, 46(12):1845-1862. [7] ZHIKOV V. On some variational problems[J]. Russian J Math Phys, 1997, 5(1):105-116. [8] RUZICKA M. Electrorheologial fluids: modeling and mathematial theory[M]. Berlin: Springer-Verlag, 2000. [9] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006, 66(4):1383-1406. [10] FAN Xianling, FAN Xing. A Knobloch-type result for p(t)-Laplacian systems[J]. J Math Anal Appl, 2003, 282(1):453-464. [11] WANG Xianjun, YUAN Ruan. Existence of periodic solutions for p(t)-Laplacian systems[J]. Nonlinear Anal, 2009, 70(2):866-880. [12] ZHANG Ziheng, XIANG Tian, YUAN Ruan. Homoclinic solutions for p(t)-Laplacian-Hamiltonian systems without coercive conditions[J]. Mediterranean Journal of Mathematics, 2016, 13(4):1589-1611. [13] ZHANG Ziheng, YUAN Ruan. Existence of two almost homoclinic solutions for p(t)-Laplacian Hamiltonian systems with a small perturbation[J]. Journal of Applied Mathematics and Computing, 2016, 52(1):173-189. [14] AN Yukun, RU Yuanfang, WANG Fanglei. Existence of nonconstant periodic solutions for a class of second-order systems with p(t)-Laplacian[J]. Boundary Value Problems, 2017, 170(1):1-15. [15] 张申贵, 慕嘉. 非自治p(t)拉普拉斯系统周期解的存在性[J]. 数学杂志,2017,37(2):409-418. ZHANG Shengui, MU Jia. Existence of periodic solutions for non-autonomous p(t)-Laplacian systems[J]. Journal of Mathematics, 2017, 37(2):409-418. [16] LIU Zhaoli, WANG Zhiqiang. On Clarks theorem and its applications to partially sublinear problems[J]. Ann I H Poincare AN, 2015, 32(5):1015-1037. |
[1] | 章欢,李永祥. 含时滞导数项的高阶常微分方程的正周期解[J]. 《山东大学学报(理学版)》, 2019, 54(4): 29-36. |
[2] | 吴忆佳,成荣. 一类Schrödinger方程的无穷多非平凡解[J]. 《山东大学学报(理学版)》, 2019, 54(2): 84-88. |
[3] | 李乐乐,贾建文. 具有时滞影响的SIRC传染病模型的Hopf分支分析[J]. 《山东大学学报(理学版)》, 2019, 54(1): 116-126. |
[4] | 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94. |
[5] | 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37. |
[6] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[7] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
[8] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[9] | 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103. |
[10] | 万树园,王智勇. 一类具有p-Laplace算子的Hamilton系统周期解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 42-46. |
[11] | 张申贵. 带p(x)-调和算子的Kirchhoff型方程的多重解[J]. 山东大学学报(理学版), 2016, 51(10): 48-53. |
[12] | 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88. |
[13] | 徐嫚. 带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(06): 69-74. |
[14] | 孙国伟, 买阿丽. 一类二阶非线性差分方程同宿解的多解性[J]. 山东大学学报(理学版), 2015, 50(05): 51-54. |
[15] | 张申贵. 局部超线性p-基尔霍夫方程的多重解[J]. 山东大学学报(理学版), 2014, 49(05): 61-68. |
|